
1

8.1 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Chapter 8: Memory ManagementChapter 8: Memory Management

� Background

� Swapping

� Contiguous Allocation

� Paging

� Segmentation

� Segmentation with Paging

8.2 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

PagingPaging

� Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

� Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes)

� Divide logical memory into blocks of same size called pages.

� Keep track of all free frames

� To run a program of size n pages, need to find n free frames and
load program

� Set up a page table to translate logical to physical addresses

� Internal fragmentation

2

8.3 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation SchemeAddress Translation Scheme

� Address generated by CPU is divided into:

� Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

� Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

8.4 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation ArchitectureAddress Translation Architecture

3

8.5 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Example Paging Example

8.6 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging ExamplePaging Example

4

8.7 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Free FramesFree Frames

Before allocation After allocation

8.8 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Implementation of Page TableImplementation of Page Table

� Page table is kept in main memory

� Page-table base register (PTBR) points to the page table

� Page-table length register (PRLR) indicates size of the page
table

� In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

� The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

5

8.9 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Associative MemoryAssociative Memory

� Associative memory – parallel search

Address translation (A´, A´´)

� If A´ is in associative register, get frame # out

� Otherwise get frame # from page table in memory

Page # Frame #

8.10 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Paging Hardware With TLBPaging Hardware With TLB

6

8.11 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Memory ProtectionMemory Protection

� Memory protection implemented by associating protection bit
with each frame

� Valid-invalid bit attached to each entry in the page table:

� “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

� “invalid” indicates that the page is not in the process’
logical address space

8.12 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Valid (v) or Invalid (i) Bit In A Page TableValid (v) or Invalid (i) Bit In A Page Table

7

8.13 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Page Table StructurePage Table Structure

� Hierarchical Paging

� Hashed Page Tables

� Inverted Page Tables

8.14 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hierarchical Page TablesHierarchical Page Tables

� Break up the logical address space into multiple page tables

� A simple technique is a two-level page table

8

8.15 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TwoTwo--Level Paging ExampleLevel Paging Example

� A logical address (on 32-bit machine with 4K page size) is divided into:

� a page number consisting of 20 bits

� a page offset consisting of 12 bits

� Since the page table is paged, the page number is further divided into:

� a 10-bit page number

� a 10-bit page offset

� Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table

page number page offset

pi p2 d

10 10 12

8.16 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

TwoTwo--Level PageLevel Page--Table SchemeTable Scheme

9

8.17 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

AddressAddress--Translation SchemeTranslation Scheme

� Address-translation scheme for a two-level 32-bit paging
architecture

8.18 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hashed Page TablesHashed Page Tables

� Common in address spaces > 32 bits

� The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same location.

� Virtual page numbers are compared in this chain searching for a
match. If a match is found, the corresponding physical frame is
extracted.

10

8.19 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Hashed Page TableHashed Page Table

8.20 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inverted Page TableInverted Page Table

� One entry for each real page of memory

� Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

� Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

� Use hash table to limit the search to one — or at most a
few — page-table entries

11

8.21 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Inverted Page Table ArchitectureInverted Page Table Architecture

8.22 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared PagesShared Pages

� Shared code

� One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

� Shared code must appear in same location in the logical
address space of all processes

� Private code and data

� Each process keeps a separate copy of the code and data

� The pages for the private code and data can appear
anywhere in the logical address space

12

8.23 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Shared Pages ExampleShared Pages Example

8.24 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

SegmentationSegmentation

� Memory-management scheme that supports user view of memory

� A program is a collection of segments. A segment is a logical unit
such as:

main program,

procedure,

function,

method,

object,

local variables, global variables,

common block,

stack,

symbol table, arrays

13

8.25 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

User’s View of a ProgramUser’s View of a Program

8.26 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Logical View of SegmentationLogical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

14

8.27 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture Segmentation Architecture

� Logical address consists of a two tuple:

<segment-number, offset>,

� Segment table – maps two-dimensional physical addresses;
each table entry has:

� base – contains the starting physical address where the
segments reside in memory

� limit – specifies the length of the segment

� Segment-table base register (STBR) points to the segment
table’s location in memory

� Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

8.28 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture (Cont.)Segmentation Architecture (Cont.)

� Relocation.

� dynamic

� by segment table

� Sharing.

� shared segments

� same segment number

� Allocation.

� first fit/best fit

� external fragmentation

15

8.29 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Segmentation Architecture (Cont.)Segmentation Architecture (Cont.)

� Protection. With each entry in segment table associate:

� validation bit = 0 � illegal segment

� read/write/execute privileges

� Protection bits associated with segments; code sharing
occurs at segment level

� Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

� A segmentation example is shown in the following diagram

8.30 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Address Translation Architecture Address Translation Architecture

16

8.31 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Example of SegmentationExample of Segmentation

8.32 Silberschatz, Galvin and Gagne ©2005Operating System Concepts

Sharing of SegmentsSharing of Segments

17

End of Chapter 8End of Chapter 8

