Chapter 9: Virtual Memory
QIBBDDIGIBB DI IIBPIIGIIBIIIG

Chapter 9: Virtual Memory

Background

Demand Paging
Process Creation
Page Replacement
Allocation of Frames
Thrashing

Demand Segmentation

Operating System Examples

Operating System Concepts 9.2 Silberschatz, Galvin andGagne ©2005

Background
m Virtual memory — separation of user logical memory from physical
memory.
e Only part of the program needs to be in memory for execution.
e Logical address space can therefore be much larger than
physical address space.

e Allows address spaces to be shared by several processes.

e Allows for more efficient process creation.
® Virtual memory can be implemented via:

e Demand paging

e Demand segmentation

@
~&
Operating System Concepts 9.3 Silberschatz, Galvin and Gagne ©2005

Virtual Memory That is Larger Than Physical Memory

page 0

page 1

page 2 P
R

\ N EOE
DN O
EON

OO O
mapry . W 4

page v physical
memory

/A

virtual
memory

L

Operating System Concepts 9.4 Silberschatz, Galvin and Gagne ©2005

Max
stack
heap
data
code
0
Operating System Concepts 95 Silberschatz, Galvin an& Gagne ©2005

Virtual-address Space

Shared Library Using Virtual Memory

stack

!

stack

}

. shared .
shared library pages shared library
heap heap
data data
code code
Operating System Concepts 9.6 Silberschatz, Galvin and\ Gagne ©2005

Demand Paging

® Bring a page into memory only when it is needed
e Less I/O needed
e Less memory needed
e Faster response
e More users

B Page is needed = reference to it
e invalid reference = abort
e not-in-memory = bring to memory

Operating System Concepts 9.7 Silberschatz, Galvin and Gagne ©2005

Transfer of a Paged Memory to Contiguous Disk Space

| N
R |
swap out o] 10 20 31
ot 55 61 70
8] 91011
1213411507
rrogam w_ swapin 16017 [J18[119[]
2021 23]
O — -

program
A

main
memory

-

Operating System Concepts 9.8 Silberschatz, Galvin and Gagne ©2005

Valid-Invalid Bit

m With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

Initially valid—invalid but is set to 0 on all entries
Example of a page table snapshot:

Frame # valid-invalid bit
1

O |k |k|k

o

page table

page fault

Operating System Concepts 9.9

m During address translation, if valid—invalid bit in page table entry is 0 = ,’,}’
e

Silberschatz, Galvin and Gagne ©2005

0
1
A 2
valid-invalid
i 2 frame i 3 //\
[——-"
2 (o} A A
= s OO O
3 E . = l:l
El F .
Pl) @
7| H B 00
logical page table .
memory D D D
1"
-
12
13
14
15

physical memory

Operating System Concepts 9.10

Silberschatz, Galvin and Gagne ©2005

Page Fault

m If there is ever a reference to a page, first reference will trap to
OS = page fault

m OS looks at another table to decide:
e Invalid reference = abort.
e Just not in memory.

Get empty frame.

Swap page into frame.

Reset tables, validation bit = 1.

Restart instruction: Least Recently Used
e block move

e auto increment/decrement location

Operating System Concepts

SLilil

£

Silberschatz, Galvin and Gagne ©2005

Steps in Handling a Page Fault

Operating System Concepts

page is on
backing store /,\
operating
system @
reference
@ trap
load M [i
restart page table
instruction
free frame
reset page bring in
table missing page
physical
memory
»’7}'
4
- 4 " 'j
9.12 Silberschatz, Galvin and Gagne ©2005

What happens if there is no free frame?

m Page replacement — find some page in memory, but not
really in use, swap it out

e algorithm

e performance — want an algorithm which will result in
minimum number of page faults

® Same page may be brought into memory several times

Operating System Concepts 9.13 Silberschatz, Galvin and Gagne ©2005

Process Creation

m Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

'

Operating System Concepts 9.14 Silberschatz, Galvin and Gagne ©2005

Copy-on-Write

m Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied

m COW allows more efficient process creation as only modified
pages are copied

m Free pages are allocated from a pool of zeroed-out pages

Operating System Concepts 9.15 Silberschatz, Galvin and Gagne ©2005

Page Replacement

m Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only
modified pages are written to disk

m Page replacement completes separation between logical memory
and physical memory — large virtual memory can be provided on a
smaller physical memory

R

=
Y

Operating System Concepts 9.16 Silberschatz, Galvin and Gagne ©2005

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update the
page and frame tables.

4. Restart the process

Operating System Concepts 9.17 Silberschatz, Galvin and Gagne ©2005

Page Replacement

frame valid-invalid bit

swap out
change victim
0 1 to invalid @page Ly |
L /
@ f| victim

reset page \
table for
page table
new page @ ST \D
desired

page in

physical
memory

-

Operating System Concepts 9.18 Silberschatz, Galvin and Gagne ©2005

Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

®m [n all our examples, the reference string is
1,2,3,4,1,2,5/1,2,3,4,5

Operating System Concepts 9.19 Silberschatz, Galvin and Gagne ©2005

Graph of Page Faults Versus The Number of Frames
16 |-
o 14
3 12
g 10
5 s
c 4 L
2=
1 2 3 4 5 6
number of frames
ST
)
Operating System Concepts 9.20 Silberschatz, Galvin and Gagne ©2005

10

First-In-First-Out (FIFO) Algorithm

m Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

[EEY

14

(63}

2|1 3 9page faults

m 4 frames

w

CllE] [

3|2

N

1 5 4

2 1 5 10 page faults
3 2

4 3

® FIFO Replacement — Belady’s Anomaly

0
e more frames = more page faults "‘.‘\‘
5

Operating System Concepts 9.21 Silberschatz, Galvin and Gagne ©2005

FIFO lllustrating Belady’'s Anomaly
16 |
@ 14
>
S 12
o
g 10F
o
S o
|
§
c 4 -
2 -
| | | | | |
1 2 3 4 5 6 7
number of frames
»’7}'
O
Operating System Concepts 9.22 Silberschatz, Galvin and Gagne ©2005

11

Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4/1,2,5/1,2,3,4,5

4
6 page faults

Elell=]

® How do you know this?
m Used for measuring how well your algorithm performs

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 9.23

Least Recently Used (LRU) Algorithm

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

5

1
2]
3|5 4
4|

® Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change

R

'
/

Operating System Concepts 9.24 Silberschatz, Galvin and Gagne ©2005

LRU Algorithm (Cont.)

m Stack implementation — keep a stack of page numbers in a double
link form:

e Page referenced:

» move it to the top

» requires 6 pointers to be changed
e No search for replacement

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 9.25

LRU Approximation Algorithms

m Reference bit
e With each page associate a bit, initially = 0
e When page is referenced bit set to 1
e Replace the one which is O (if one exists). We do not know
the order, however.
m Second chance
e Need reference bit
e Clock replacement

e |f page to be replaced (in clock order) has reference bit = 1
then:

» set reference bit 0
» leave page in memory
» replace next page (in clock order), subject to same rules

'
/

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 9.26

reference pages reference pages
bits bits
[o] (o]
(o] (o]
ten [e]
[o]
[o] =p{0]
circular queue of pages circular queue of pages
(a) (b)
v)'"’k
e
e
Operating System Concepts 9.27 Silberschatz, Galvin and Gagne ©2005

Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

m Keep a counter of the number of references that have been
made to each page

m LFU Algorithm: replaces page with smallest count

m MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet to

be used
S
dh
N
Operating System Concepts 9.28 Silberschatz, Galvin and Gagne ©2005

14

