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Background
m Virtual memory — separation of user logical memory from physical
memory.
e Only part of the program needs to be in memory for execution.
e Logical address space can therefore be much larger than
physical address space.

e Allows address spaces to be shared by several processes.

e Allows for more efficient process creation.
® Virtual memory can be implemented via:

e Demand paging

e Demand segmentation
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Virtual Memory That is Larger Than Physical Memory
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Virtual-address Space

Shared Library Using Virtual Memory
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Demand Paging

® Bring a page into memory only when it is needed
e Less I/O needed
e Less memory needed
e Faster response
e More users

B Page is needed = reference to it
e invalid reference = abort
e not-in-memory = bring to memory
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Transfer of a Paged Memory to Contiguous Disk Space
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Valid-Invalid Bit

m  With each page table entry a valid—invalid bit is associated
(1 = in-memory, 0 = not-in-memory)

Initially valid—invalid but is set to 0 on all entries
Example of a page table snapshot:

Frame # valid-invalid bit
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m  During address translation, if valid—invalid bit in page table entry is 0 = ,’,}’
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Page Fault

m If there is ever a reference to a page, first reference will trap to
OS = page fault

m  OS looks at another table to decide:
e Invalid reference = abort.
e Just not in memory.

Get empty frame.

Swap page into frame.

Reset tables, validation bit = 1.

Restart instruction: Least Recently Used
e block move

e auto increment/decrement location
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Steps in Handling a Page Fault
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What happens if there is no free frame?

m Page replacement — find some page in memory, but not
really in use, swap it out

e algorithm

e performance — want an algorithm which will result in
minimum number of page faults

®  Same page may be brought into memory several times
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Process Creation

m Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)
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Copy-on-Write

m  Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

If either process modifies a shared page, only then is the page
copied

m  COW allows more efficient process creation as only modified
pages are copied

m Free pages are allocated from a pool of zeroed-out pages
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Page Replacement

m Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

m Use modify (dirty) bit to reduce overhead of page transfers — only
modified pages are written to disk

m Page replacement completes separation between logical memory
and physical memory — large virtual memory can be provided on a
smaller physical memory
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Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement
algorithm to select a victim frame

3. Read the desired page into the (newly) free frame. Update the
page and frame tables.

4. Restart the process
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Page Replacement
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Page Replacement Algorithms

Want lowest page-fault rate

Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string

®m [n all our examples, the reference string is
1,2,3,4,1,2,5/1,2,3,4,5
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Graph of Page Faults Versus The Number of Frames
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First-In-First-Out (FIFO) Algorithm

m Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)
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®  FIFO Replacement — Belady’s Anomaly

0
e more frames = more page faults "‘.‘\‘
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FIFO lllustrating Belady’'s Anomaly
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Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4/1,2,5/1,2,3,4,5

4
6 page faults

Elell=]

® How do you know this?
m Used for measuring how well your algorithm performs

Silberschatz, Galvin and Gagne ©2005

Operating System Concepts 9.23

Least Recently Used (LRU) Algorithm

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
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® Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change
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LRU Algorithm (Cont.)

m Stack implementation — keep a stack of page numbers in a double
link form:

e Page referenced:

» move it to the top

» requires 6 pointers to be changed
e No search for replacement
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LRU Approximation Algorithms

m Reference bit
e With each page associate a bit, initially = 0
e When page is referenced bit set to 1
e Replace the one which is O (if one exists). We do not know
the order, however.
m Second chance
e Need reference bit
e Clock replacement

e |f page to be replaced (in clock order) has reference bit = 1
then:

» set reference bit 0
» leave page in memory
» replace next page (in clock order), subject to same rules
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Second-Chance (clock) Page-Replacement Algorithm

Counting Algorithms

m Keep a counter of the number of references that have been
made to each page

m LFU Algorithm: replaces page with smallest count

m MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet to

be used
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