
EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 1

EECS 10: Computational Methods in
Electrical and Computer Engineering

Lecture 19

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 2

Lecture 19: Overview

• Data Structures
– Structures

• Declaration and definition

• Instantiation and initialization

• Member access

– Unions
• Declaration and definition

• Member access

– Enumerators
• Declaration and definition

– Type definitions

EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 2

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 3

Data Structures

• Structures (aka. records): struct
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of members
• Names and types of members are fixed at structure definition

– Member access by name
• Member-access operator: structure_name.member_name

• Example:

struct S { int i; float f;} s1, s2;

s1.i = 42; /* access to members */
s1.f = 3.1415;
s2 = s1; /* assignment */
s1.i = s1.i + 2*s2.i;

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 4

Data Structures

• Structure Declaration
– Declaration of a user-defined data type

• Structure Definition
– Definition of structure members and their type

• Structure Instantiation and Initialization
– Definition of a variable of structure type
– Initializer list defines initial values of members

• Example:
struct Student; /* declaration */

struct Student /* definition */
{ int ID; /* members */

char Name[40];
char Grade;

};

struct Student Jane = /* instantiation */
{1001, “Jane Doe”, ‘A’}; /* initialization */

EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 3

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 5

Data Structures

• Structure Access
– Members are accessed by their name
– Member-access operator .

• Example:
struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

void PrintStudent(struct Student s)
{

printf(“ID: %d\n”, s.ID);
printf(“Name: %s\n”, s.Name);
printf(“Grade: %c\n”, s.Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 6

Data Structures

• Unions: union
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of mutually exclusive members
• Names and types of members are fixed at union definition

– Member access by name
• Member-access operator: union_name.member_name

– Only one member may be used at a time!
• All members share the same location in memory!

• Example:

union U { int i; float f;} u1, u2;

u1.i = 42; /* access to members */
u2.f = 3.1415;
u1.f = u2.f; /* destroys u1.i! */

EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 4

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 7

Data Structures

• Union Declaration
– Declaration of a user-defined data type

• Union Definition
– Definition of union members and their type

• Union Instantiation and Initialization
– Definition of a variable of union type
– Single initializer defines value of first member

• Example:
union HeightOfTriangle; /* declaration */

union HeightOfTriangle /* definition */
{ int Height; /* members */

int LengthOfSideA;
float AngleBeta;

};

union HeightOfTriangle H /* instantiation */
= { 42 }; /* initialization */

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 8

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
union HeightOfTriangle
{ int Height;

int SideA;
float Beta;

};

union HeightOfTriangle t1, t2, t3
= { 42 };

0

t2
Height/
SideA/
Beta

0

t1
Height/
SideA/
Beta

42

t3
Height/
SideA/
Beta

EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 5

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 9

Data Structures

• Union Access
– Members are accessed by their name
– Member-access operator .

• Example:
union HeightOfTriangle
{ int Height;

int SideA;
float Beta;

};

union HeightOfTriangle t1, t2, t3
= { 42 };

void SetHeight(void)
{

t1.Height = 10;
t2.SideA = t1.Height / 2;
t3.Beta = 90.0;

}

5

t2
Height/
SideA/
Beta

10

t1
Height/
SideA/
Beta

90.0

t3
Height/
SideA/
Beta

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 10

Data Structures

• Enumerators: enum
– User-defined data type

• Members are an enumeration of integral constants

– Fixed set of members
• Names and values of members are fixed at enumerator definition

– Members are constants
• Member values cannot be changed after definition

• Example:

enum E { red, yellow, green };
enum E LightNS, LightEW;

LightEW = green; /* assignment */
if (LightNS == green) /* comparison */

{ LightEW = red; }

EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 6

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 11

Data Structures

• Enumerator Declaration
– Declaration of a user-defined data type

• Enumerator Definition
– Definition of enumerator members and their value

• Enumerator Instantiation and Initialization
– Definition of a variable of enumerator type
– Initializer should be one member of the enumerator

• Example:
enum Weekday; /* declaration */

enum Weekday /* definition */
{ Monday, Tuesday, /* members */

Wednesday, Thursday,
Friday, Saturday, Sunday

};

enum Weekday Today /* instantiation */
= Wednesday; /* initialization */

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 12

Data Structures

• Enumerator Values
– Enumerator values are

integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

–

• Example:

enum Weekday
{ Monday,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Weekday Today
= Wednesday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Wednesday

Today

Day: 2

EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 7

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 13

Data Structures

• Enumerator Values
– Enumerator values are

integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 1,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

enum Weekday Today
= Wednesday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Wednesday

Today

Day: 3

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 14

Data Structures

• Enumerator Values
– Enumerator values are

integer constants

– By default, enumerator values
start at 0 and are incremented
by 1 for each following member

– Specific enumerator values
may be defined by the user

• Example:

enum Weekday
{ Monday = 2,

Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday = 1

};

enum Weekday Today
= Wednesday;

void PrintWeekday(
enum Weekday d)

{
printf(“Day: %d\n”, d);

}

Wednesday

Today

Day: 4

EECS10: Comp. Methods in ECE Lecture 19

(c) 2009 R. Doemer 8

EECS10: Computational Methods in ECE, Lecture 19 (c) 2009 R. Doemer 15

Data Structures

• Type definitions: typedef
– A typedef can be defined as an alias type for another type

– A typedef definition follows the same rules as a variable
definition

– Type definitions are usually used to abbreviate access to
user-defined types

• Examples:
typedef long MyInteger;

typedef enum Weekday Day;
Day Today;

typedef struct Student Scholar;
Scholar Jane, John;

