
EECS10: Comp. Methods in ECE Lecture 21

(c) 2009 R. Doemer 1

EECS 10: Computational Methods in
Electrical and Computer Engineering

Lecture 21

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 2

Lecture 21: Overview

• Data Structures
– Memory organization

– Objects in memory

– Pointers
• Pointer definition

• Pointer operators

• Pointer dereferencing

EECS10: Comp. Methods in ECE Lecture 21

(c) 2009 R. Doemer 2

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 3

Memory Organization

• Memory Segmentation
– typical (virtual) memory layout

on processor with 4-byte words
and 1 GB of memory

– Stack
• grows and shrinks dynamically
• function call hierarchy
• stack frames with local variables

– Heap
• “free” storage
• dynamic allocation by the user

– Data segment
• global (and static) variables

– Program segment
• stores binary program code

– Reserved area for operating system

Stack

Reserved
for OS

Program
segment

Data
segment

Heap

0

bfff fffc

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 4

Memory Organization

• Memory Segmentation
– typical (virtual) memory layout

on processor with 4-byte words
and 1 GB of memory

• Memory errors
– Out of memory

• Stack and heap collide

– Segmentation fault
• access outside allocated segments
• e.g. access to segment reserved for OS

– Bus error
• mis-aligned word access
• e.g. word access to an address

that is not divisible by 4

Stack

Reserved
for OS

Program
segment

Data
segment

Heap

0

bfff fffc

EECS10: Comp. Methods in ECE Lecture 21

(c) 2009 R. Doemer 3

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 5

Objects in Memory

• Data in memory is organized as a set of objects
• Every object has ...

– ... a type (e.g. int, double, char[5])
• type is known to the compiler at compile time

– ... a value (e.g. 42, 3.1415, “text”)
• value is used for computation of expressions

– ... a size (number of bytes in the memory)
• in C, the sizeof operator returns the size of a variable or type

– ... a location (address in the memory)
• in C, the “address-of” operator (&) returns the address of an object

• Variables ...
– ... serve as identifiers for objects
– ... are bound to objects
– ... give objects a name

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 6

Objects in Memory

• Example: Variable values, addresses, and sizes
int x = 42;
int y = 13;
char s[] = "Hello World!";

printf("Value of x is %d.\n", x);
printf("Address of x is %p.\n", &x);
printf("Size of x is %u.\n", sizeof(x));
printf("Value of y is %d.\n", y);
printf("Address of y is %p.\n", &y);
printf("Size of y is %u.\n", sizeof(y));
printf("Value of s is %s.\n", s);
printf("Address of s is %p.\n", &s);
printf("Size of s is %u.\n", sizeof(s));
printf("Value of s[1] is %c.\n", s[1]);
printf("Address of s[1] is %p.\n", &s[1]);
printf("Size of s[1] is %u.\n", sizeof(s[1]));

EECS10: Comp. Methods in ECE Lecture 21

(c) 2009 R. Doemer 4

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 7

Stack...

...

Objects in Memory

• Example: Variable values, addresses, and sizes

Value of x is 42.
Address of x is ffbefa4c.
Size of x is 4.
Value of y is 13.
Address of y is ffbefa48.
Size of y is 4.
Value of s is Hello World!.
Address of s is ffbefa38.
Size of s is 13.
Value of s[1] is e.
Address of s[1] is ffbefa39.
Size of s[1] is 1.

int x = 42;
int y = 13;
char s[] = "Hello World!";
...

ffbefa4c 42

ffbefa48 13

ffbefa44

‘H’‘e’‘l’‘l’

ffbefa40

‘o’‘ ’‘W’‘o’ffbefa3c

‘r’‘l’‘d’‘!’

ffbefa38

0

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 8

Pointers

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the “address-of” another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

p = &x; /* p points to x */

p = 0; /* p points to no object */

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS10: Comp. Methods in ECE Lecture 21

(c) 2009 R. Doemer 5

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 9

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

0

p

42

x

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 10

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */

p

42

x

EECS10: Comp. Methods in ECE Lecture 21

(c) 2009 R. Doemer 6

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 11

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 12

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x

EECS10: Comp. Methods in ECE Lecture 21

(c) 2009 R. Doemer 7

EECS10: Computational Methods in ECE, Lecture 21 (c) 2009 R. Doemer 13

Pointers

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the content of a structure member

struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID: %d\n”, p->ID);
printf(“Name: %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

p

