
EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 1

EECS 10: Computational Methods in
Electrical and Computer Engineering

Lecture 22

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 2

Lecture 22: Overview

• Pointers
– Definition, initialization and assignment

– Pointer dereferencing

– Pointer arithmetic
• Increment, decrement

– Pointer comparison

– String operations using pointers
• Pointer and array type equivalence

• Passing pointers to functions
• Type qualifier const

– Standard library functions
• String operations defined in string.h

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 2

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 3

Pointers

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the “address-of” another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

p = &x; /* p points to x */

p = 0; /* p points to no object */

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 4

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

0

p

42

x

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 3

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 5

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 6

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 4

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 7

Pointers

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the content of a structure member

struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID: %d\n”, p->ID);
printf(“Name: %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

p

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 8

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */

20,

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 5

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 9

20,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30,

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 10

20, 30,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20,

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 6

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 11

20, 30, 20,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */
p += 2; /* increment p by 2 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20, 40,

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 12

Pointers

• Pointer Comparison
– Pointers may be compared for equality

• operators == and != are useful to determine identity

• operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */

if (p1 == p2)
{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

Contents of p1 and p2 are the same!

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 7

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 13

Pointers

• Pointer Comparison
– Pointers may be compared for equality

• operators == and != are useful to determine identity

• operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */
p1 += 2; /* increment p1 by 2 */
if (p1 == p2)

{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

p1 and p2 are identical!
Contents of p1 and p2 are the same!

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 14

Pointers

• String Operations using Pointers
– Example: String length

int Length(char *s)
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(&s1[0]));

printf(“Length of %s is %d\n”,
s2, Length(&s2[0]));

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 8

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 15

Pointers

• String Operations using Pointers
– Example: String length

– Array and pointer types are equivalent
• s2 is an array, but can be passed as a pointer argument

• Character array s2 is same as character pointer &s2[0]

int Length(char *s)
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(&s1[0]));

printf(“Length of %s is %d\n”,
s2, Length(s2));

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 16

Pointers

• String Operations using Pointers
– Example: String length

– Array and pointer types are equivalent
• s1 is an array of characters, s2 is a pointer to character

• Both s1 and s2 can be passed to character pointer s

int Length(char *s)
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char *s2 = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(s1));

printf(“Length of %s is %d\n”,
s2, Length(s2));

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 9

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 17

Pointers

• String Operations using Pointers
– Example: String length

– Array and pointer types are equivalent
• s1 is an array of characters, s2 is a pointer to character

• Both s1 and s2 can be passed to character array s

int Length(char s[])
{

int l = 0;
char *p = s;

while(*p != 0)
{ p++;

l++;
}
return l;

}

Length of ABC is 3
Length of Hello World! is 12

char s1[] = “ABC”;
char *s2 = “Hello World!”;

printf(“Length of %s is %d\n”,
s1, Length(s1));

printf(“Length of %s is %d\n”,
s2, Length(s2));

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 18

Pointers

• String Operations using Pointers
– Example: String copy

– Passing pointers as arguments to functions
• Function can modify caller data by pointer dereferencing

• Passing pointers = Pass by reference!

void Copy(
char *Dst,
char *Src)

{
do{

*Dst = *Src;
Dst++;

} while(*Src++);
}

s1 is ABC, s2 is Hello World!
s1 is ABC, s2 is ABC

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“s1 is %s, s2 is %s\n”,
s1, s2);

Copy(s2, s1);
printf(“s1 is %s, s2 is %s\n”,

s1, s2);

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 10

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 19

Pointers

• String Operations using Pointers
– Example: String copy

– Passing pointers as arguments to functions
• Function can modify caller data by pointer dereferencing

• Type qualifier const:
Modification by pointer derefencing not allowed!

void Copy(
char *Dst,

const char *Src)
{
do{

*Dst = *Src;
Dst++;

} while(*Src++);
}

s1 is ABC, s2 is Hello World!
s1 is ABC, s2 is ABC

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“s1 is %s, s2 is %s\n”,
s1, s2);

Copy(s2, s1);
printf(“s1 is %s, s2 is %s\n”,

s1, s2);

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 20

Pointers

• String Operations using Pointers
– Example: String copy

– Passing pointers as arguments to functions
• Function can modify caller data by pointer dereferencing

• Type qualifier const:
Modification by pointer derefencing not allowed!

void Copy(
const char *Dst,
const char *Src)

{
do{

*Dst = *Src;
Dst++;

} while(*Src++);
}

s1 is ABC, s2 is Hello World!
s1 is ABC, s2 is ABC

char s1[] = “ABC”;
char s2[] = “Hello World!”;

printf(“s1 is %s, s2 is %s\n”,
s1, s2);

Copy(s2, s1);
printf(“s1 is %s, s2 is %s\n”,

s1, s2);
Error!

Write access to
const data!

EECS10: Comp. Methods in ECE Lecture 22

(c) 2009 R. Doemer 11

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 21

Standard Library Functions

• Functions declared in string.h (part 1/2)
– typedef unsigned int size_t;

• type definition for length of strings

– size_t strlen(const char *s);

• returns the length of string s

– int strcmp(const char *s1, const char *s2);

• alphabetically compares string s1 with string s2

• returns -1 / 0 / 1 for less-than / equal-to / greater-than

– int strncmp(const char *s1, const char *s2, size_t n);

• same as previous, but compares maximal n characters

– int strcasecmp(const char *s1, const char *s2);

– int strncasecmp(const char *s1, const char *s2,
size_t n);

• same as string comparisons above, but case-insensitive

EECS10: Computational Methods in ECE, Lecture 22 (c) 2009 R. Doemer 22

Standard Library Functions

• Functions declared in string.h (part 2/2)
– char *strcpy(char *s1, const char *s2);

• copies string s2 into string s1

– char *strncpy(char *s1, const char *s2, size_t n);

• copies maximal n characters of string s2 into string s1

– char *strcat(char *s1, const char *s2);

• concatenates string s2 to string s1

– char *strncat(char *s1, const char *s2, size_t n);

• concatenates maximal n characters of string s2 to string s1

– char *strchr(const char *s, int c);

• returns a pointer to the first character c in string s, or NULL if not found

– char *strrchr(const char *s, int c);

• returns a pointer to the last character c in string s, or NULL if not found

– char *strstr(const char *s1, const char *s2);

• returns a pointer to the first appearance of s2 in string s1 (or NULL)

