
EECS 10: Assignment 5

Prof. Rainer Doemer

October 23, 2009

Due Monday 11/02/2008 12:00pm

1 Monte Carlo Calculation of Pi [20 points]

Monte Carlo (MC) methods are stochastic techniques, meaning they are based on the use of random numbers and
probability statistics to investigate problems. In this part of the homework, you are asked to write a program to imple-
ment a simple geometric MC experiment which calculates the value of Pi based on a “hit and miss” integration.

The figure below shows a unit circle circumscribed by a square. The radius of the circler equals to 1/2 of the
side of the square. Furthermore, the center of the circle andthe center of the square are identical.

ra
d
iu
s
=
 r

side = 2*r
Center (r, r)

A(x
A
,y
A
)

B(x
B
,y
B
)

X

Y

(0, 0)

Figure 1: A Circle Circumscribed by a Square

Imagine we can throw points randomly at the above figure. If wecan throw infinite random points, it should be appar-
ent that of the total number of points that hit the circle divded by the the number of points that hit within the square is
proportional to the area of that part.
In other words:

number o f points hitting circle area
number o f points hitting square area = area o f circle

area o f square = π×r×r
(2×r)2 = π×r×r

4×r×r = π
4

1

Therefore, we get the formula to calculateπ using Monte Carlo method:

π = 4× number o f points hitting circle area
number o f points hitting square area

In the real world, we can only throw a finite number of random points, therefore, theπ calculated using the above
formula is an approximation of the exact value ofπ.

We can have our computer generate random numbers to simulatethe throwing of points. For each point, we can have
computer to generate two random floating point numbers to be thex andy coordinates of the point, where 0≤ x ≤ 2r
and 0≤ y ≤ 2r so that(x,y) must fall within the square area. However, this randomly generated point could fall within
the circle area or fall out of the circle area.

To decide if the randomly generated point(x,y) is within the area of the circle, we can compare the distance of
the point to the center with the radiusr. For example, the pointA in the above figure is in the circle area since its
distance to center is less thanr. However, the pointB in the above figure is not in the circle area since its distanceto
center is greater thanr.

Note: If the distance of point to the center equals to radiusr, then that point is considered within the circle area.

Assume the radius of the circle isr and the coordinates of the randomly generated pointP is (x,y), then the dis-
tance ofP to the center is:
Distance(P,Center) =

√

(x− r)× (x− r)+(y− r)× (y− r)

To avoid the square root calculation, you can compareDistance(P,Center)× Distance(P,Center) with the radius
squaredr× r in order to decide if the randomly generated point is within the circle area.

At the beginning, your program should ask for the input of radius r and the number of random pointsN the com-
puter needs to generate. The output should like this:
Enter the radius of circle: 5
Enter the number of points: 10

During the generation, whenever a random point is generated, your program should print out the coordinates of the
point and whether the point isIn or Out the circle area like this:

Point No.1(x=0.000000,y=6.551714): OUT
Point No.2(x=3.048189,y=6.749779): IN
Point No.3(x=1.067537,y=5.165868): IN
Point No.4(x=4.896695,y=6.024659): IN
Point No.5(x=3.699454,y=2.566607): IN
Point No.6(x=3.741874,y=8.255867): IN
Point No.7(x=1.727042,y=2.977996): IN
Point No.8(x=6.435438,y=7.896664): IN
Point No.9(x=9.878231,y=8.005921): OUT
Point No.10(x=4.642476,y=5.389874): IN

At the end, your program should output the number of points within and out of the circle, together with the ap-
proximation value ofπ like this:
/******In Summary******/
Points within circle area: 8
Points out of circle area: 2
Pi= 3.200000

To show that your program works correctly, run it once with the radius = 10 and the number of points = 20. Sub-
mit the output as your script file (mc.script). Please compile your C code using-ansi -Wall options as below to

2

specify ANSI code with all warnings:

gcc -o mc -ansi -Wall mc.c

The files that you should submit for this part of the assignment are:

• mc.c: the source code file.

• mc.txt: the brief text file to explain what the program does and why you chose your method of implementation.

• mc.script: the typescript file to show that your program works with the radius = 10 and the number of points =
20.

HINT In assignment 4, you have learned how to generate random integer numbers within the range of[0,n) (n is
exclusive). However, in this homework, you need to generatefloating point numbers with the range of[0,n] (n is
inclusive). Therefore, there are some modification of the code described in homework4.

You need to replace the following line in assignment 4
int randomNumber = rand() % n;
with
double randomNumber = ((double)rand())/((double)RAND MAX)*s; /* s is the side of the square */
Note: please do not forget to include thestdlib.h at the beginning of your program:
#include 〈stdlib.h 〉

Furthermore, in assignment 5, we want you to use the same seedfor the random numbers generation in order to gen-
erate the same series of random numbers. Therefore, take outthe following line:
#include〈time.h〉

and replace the following line in homework4
srand(time(NULL)); with
srand(0);

2 Square root approximation [20 points + 5 points (extra credit)]

Write a program to calculate the square root of any positive floating-point value.
At the beginning, the program should ask the user to input a positive number N in the range between 0 and 10000.

Please input a positive number (1 to 10000):

We will use a binary search approximation technique for thisassignment. In particular, the program will always keep a
range of a left bound L and a right boundR, where the actual square rootS lies somewhere betweenL andR: L ≤ S ≤ R
Consequently, it follows thatL ∗L ≤ N = S ∗ S ≤ R ∗R. Thus, to find S, we can compareL ∗L or R ∗R with N. The
binary approximation then works as follows. First, we compute a valueM that lies in the middle between the left
bound L and the right boundR : M = L +(R−L)/2. Then, ifM ∗M is less thanN, the square root obviously lies
somewhere in the right half of the current range (i.e. withinM to R), otherwise in the left half of the current range (i.e.
within L to M). The program then can use the proper half of the range as the new range and repeat the whole process.
With each iteration, the search range is effectively reduced to half its previous size. Because of this, this technique is
called binary search. To start the search, we will use the range from 0 toN (which is guaranteed to contain the square
root ofN). We will stop the iteration, once we have reached a range that is smaller than 0.0000000001 so that we reach
a precision of 10 digits after the decimal point for our approximation. (HINT: We will need long double variables for
all variables in order to achieve this precision.)

The pseudo-code of the algorithm can be written as follows:

3

Start with a range of 0 to N
As long as the range is not accurate enough, repeat the following steps:
Compute the middle of the range
Compare the square of the middle value with N
If the middle value is less than the square root

Use middle-to-right as the new range
Otherwise

Use left-to-middle as the new range
Output the middle of the latest range as result

For example, to compute the square root of 10, the program will start with 5, which is in the middle between 0 and
10. Since 5∗5 = 25 is larger than 10, the program will try the middle number 2.5 of left bound (0 to 5). Thus, the
program compares 2.5∗2.5 with 10. Because the result 6.25 is smaller than 10, it will pick 3.75 (the middle number
of 2.5 and 5) as the next guess. By picking the middle number every time and comparing its square with the original
number, the program gets closer to the actual square root.

To demonstrate the approximation procedure, your program should print the approximated square root in each it-
eration, as follows:

Please input a positive number (1 to 10000): 42
Iteration 1: the square root of 42.0000000000 is approximately 21.0000000000
Iteration 2: the square root of 42.0000000000 is approximately 10.5000000000
Iteration 3: the square root of 42.0000000000 is approximately 5.2500000000
...
Iteration 39: the square root of 42.0000000000 is approximately 6.4807406985

Note that your program should run properly for any real number between 1.0 and 10000.0 (not only for the demo value
42).

The files that you should submit for this part of the assignment are:

• root.c: the source code file.

• root.txt: the brief text file to explain what the program does and why you chose your method of implementation.

• root.script: the typescript file to show that your program works with the numbers shown above, as well as with
the number 28.

3 Bonus Problem [5 points]

Improve your program so that it can calculate the n-th root ofany value. The value n should be a positive integer input
by the user.

For example:

Please input a positive number (1 to 10000): 42
Please input the value of integer n (n>0): 5
Iteration 1: the 5th root of 42.0000000000 is approximately 21.0000000000
Iteration 2: the 5th root of 42.0000000000 is approximately 10.5000000000
Iteration 3: the 5th root of 42.0000000000 is approximately 5.2500000000
...
Iteration 39: the 5th root of 42.0000000000 is approximately 2.1117857650

To submit, use the same files as in Part 2, i.e. root.c, root.txt, and root.script. The script file should show the output of
your program when the user inputs 42 andn = 5.

4

4 Submission

Submission for these files will be similar to last week’s assignment. The only difference is that you need to create
a directory calledhw5/. Put all the files for assignment 5 in that directory and run the /ecelib/bin/turnin
command to submit your homework.And please pay attention to any announcements on the course noteboard.

5

