EECS 10: Assignment 5

Prof. Rainer Doemer

October 23, 2009

\ Due Monday 11/02/2008 12:00p(m

1 Monte Carlo Calculation of Pi [20 points]

Monte Carlo (MC) methods are stochastic techniques, mgahiey are based on the use of random numbers and
probability statistics to investigate problems. In thistmd the homework, you are asked to write a program to imple-
ment a simple geometric MC experiment which calculates #heevof Pi based on a “hit and miss” integration.

The figure below shows a unit circle circumscribed by a squarke radius of the circle equals to 1/2 of the
side of the square. Furthermore, the center of the circlaf@denter of the square are identical.

—
Il
2]
=
AGyyy) 3
o~~~ = .
= - side = 2*r
\A¥Center (r, 1)
.5{.
B(xp,yp) N
(0, 0) X

Figure 1: A Circle Circumscribed by a Square

Imagine we can throw points randomly at the above figure. I€amthrow infinite random points, it should be appar-
ent that of the total number of points that hit the circle @igdy the the number of points that hit within the square is
proportional to the area of that part.

In other words:

number of points hitting circlearea __ area of circle __ mxrxr __ mxrxr s

number of points hitting square area — area of square — (2xr)2 ~ 4xrxr 4

Therefore, we get the formula to calculateising Monte Carlo method:

4% number of points hitting circle area

n= number of points hitting square area

In the real world, we can only throw a finite number of randonmntsy therefore, thet calculated using the above
formula is an approximation of the exact valuerof

We can have our computer generate random numbers to sintlatierowing of points. For each point, we can have
computer to generate two random floating point numbers tbidr andy coordinates of the point, where<Ox < 2r
and 0< y < 2r so that(x,y) must fall within the square area. However, this randomlyegated point could fall within
the circle area or fall out of the circle area.

To decide if the randomly generated po{xty) is within the area of the circle, we can compare the distarice o
the point to the center with the radius For example, the poimh in the above figure is in the circle area since its
distance to center is less thenHowever, the poinB in the above figure is not in the circle area since its distaoce
center is greater than

Note: If the distance of point to the center equals to radiutten that point is considered within the circle area.
Assume the radius of the circle isand the coordinates of the randomly generated p®iig (x,y), then the dis-

tance ofP to the center is:
Distance(P,Center) = /(X—r1) x (X—r)+(y—r) x (y—r)

To avoid the square root calculation, you can comgaigance(P,Center) x Distance(P,Center) with the radius
squared x r in order to decide if the randomly generated point is withia tircle area.

At the beginning, your program should ask for the input ofiuad and the number of random pointsthe com-
puter needs to generate. The output should like this:

Enter the radius of circle: 5

Enter the nunmber of points: 10

During the generation, whenever a random point is genergtad program should print out the coordinates of the
point and whether the point Is or Out the circle area like this:

Poi nt No. 1(x=0. 000000, y=6.551714): QOUT
Poi nt No. 2(x=3.048189, y=6. 749779): IN
Poi nt No. 3(x=1. 067537, y=5.165868): IN
Poi nt No. 4(x=4. 896695, y=6. 024659): IN
Poi nt No. 5(x=3. 699454, y=2. 566607): IN
Poi nt No. 6(x=3. 741874, y=8. 255867): IN
Poi nt No. 7(x=1. 727042, y=2.977996): IN
Poi nt No. 8(x=6.435438, y=7.896664): IN
Poi nt No. 9(x=9. 878231, y=8. 005921): QUT
Poi nt No. 10(x=4. 642476, y=5.389874): IN

At the end, your program should output the number of pointhiwiand out of the circle, together with the ap-
proximation value oftlike this:

[*x*xxx%| n Surn‘rary******/

Points within circle area: 8

Points out of circle area: 2

Pi = 3. 200000

To show that your program works correctly, run it once witk thdius = 10 and the number of points = 20. Sub-
mit the output as your script filen{c.script). Please compile your C code usirgns -Wall options as below to

specify ANSI code with all warnings:
gcc -o nt -ansi -Wall nt.c

The files that you should submit for this part of the assigrraes:

e mc.c: the source code file.
e mc.txt: the brief text file to explain what the program does and why gleose your method of implementation.

e mc.script: the typescript file to show that your program works with tadius = 10 and the number of points =
20.

HINT In assignment 4, you have learned how to generate randogeinteimbers within the range @,n) (n is
exclusive). However, in this homework, you need to geneflatding point numbers with the range [, n] (n is
inclusive). Therefore, there are some modification of theeatescribed in homework4.

You need to replace the following line in assignment 4

int randomNumber = rand() % n;

with

double randomNumber = ((double)rand())/((double) RAND _MAX)*s;, /* s is the side of the square */
Note: please do not forget to include thtdlib.h at the beginning of your program:

#include (stdlib.h)

Furthermore, in assignment 5, we want you to use the samedetted random numbers generation in order to gen-
erate the same series of random numbers. Therefore, takieeoiatlowing line:
#include(time.h

and replace the following line in homework4
srand(time(NULL)); with
srand(0);

2 Sguareroot approximation [20 points + 5 points (extra credit)]

Write a program to calculate the square root of any positivaifig-point value.
At the beginning, the program should ask the user to inputsétipe number N in the range between 0 and 10000.

Pl ease input a positive nunber (1 to 10000):

We will use a binary search approximation technique foralssignment. In particular, the program will always keep a
range of a left bound L and a right bouRgwhere the actual square rddlies somewhere betweérandR: L < S<R
Consequently, it follows thdt xL <N = SxS< RxR. Thus, to find S, we can compale: L or R+« Rwith N. The
binary approximation then works as follows. First, we cotepa valueM that lies in the middle between the left
bound L and the right boun®: M = L+ (R—L)/2. Then, ifM «M is less tharN, the square root obviously lies
somewhere in the right half of the current range (i.e. witflito R), otherwise in the left half of the current range (i.e.
within L to M). The program then can use the proper half of the range astheange and repeat the whole process.
With each iteration, the search range is effectively reduoehalf its previous size. Because of this, this technigue i
called binary search. To start the search, we will use thgeéom 0 toN (which is guaranteed to contain the square
root of N). We will stop the iteration, once we have reached a rangedisanaller than @000000001 so that we reach
a precision of 10 digits after the decimal point for our apgmmation. (HINT: We will need long double variables for
all variables in order to achieve this precision.)

The pseudo-code of the algorithm can be written as follows:

Start with a range of 0 to N
As long as the range is not accurate enough, repeat the follow ng steps:
Comput e the mddle of the range
Conpare the square of the mddle value with N
If the nmiddle value is | ess than the square root
Use nmiddle-to-right as the new range
O herwi se
Use left-to-niddle as the new range
Qut put the mddle of the |latest range as result

For example, to compute the square root of 10, the prograistaiit with 5, which is in the middle between 0 and
10. Since %5 = 25 is larger than 10, the program will try the middle numbér @f left bound (0 to 5). Thus, the
program compares.2x 2.5 with 10. Because the resuli2s is smaller than 10, it will pick 35 (the middle number
of 2.5 and 5) as the next guess. By picking the middle number eiresyand comparing its square with the original
number, the program gets closer to the actual square root.

To demonstrate the approximation procedure, your progtfaould print the approximated square root in each it-
eration, as follows:

Pl ease input a positive nunber (1 to 10000): 42

Iteration 1: the square root of 42.0000000000 is approximately 21. 0000000000
Iteration 2: the square root of 42.0000000000 is approximately 10.5000000000
Iteration 3: the square root of 42.0000000000 is approxi mately 5.2500000000

Iteration 39: the square root of 42. 0000000000 is approximately 6.4807406985

Note that your program should run properly for any real nunhieéween 1.0 and 10000.0 (not only for the demo value
42).

The files that you should submit for this part of the assigrraes

e root.c: the source code file.
e root.txt: the brief text file to explain what the program does and why glmose your method of implementation.

e root.script: the typescript file to show that your program works with thentbers shown above, as well as with
the number 28.

3 BonusProblem [5 points]

Improve your program so that it can calculate the n-th ro@nyfvalue. The value n should be a positive integer input
by the user.

For example:

Pl ease input a positive nunber (1 to 10000): 42

Pl ease input the value of integer n (n>0): 5

Iteration 1: the 5th root of 42.0000000000 is approxi mtely 21.0000000000
Iteration 2: the 5th root of 42.0000000000 is approximtely 10.5000000000
Iteration 3: the 5th root of 42.0000000000 is approximtely 5.2500000000

Iteration 39: the 5th root of 42.0000000000 is approximately 2.1117857650

To submit, use the same files as in Part 2, i.e. root.c, raohixi root.script. The script file should show the output of
your program when the user inputs 42 ang 5.

4 Submission

Submission for these files will be similar to last week’s gagient. The only difference is that you need to create
a directory callechws/ . Put all the files for assignment 5 in that directory and rum/thcel i b/ bi n/ turni n
command to submit your homeworknd please pay attention to any announcements on the cour se noteboard.

