
EECS 222A 
System-on-Chip Description and Modeling 

Fall 2009 
 

Assignment 3 
 
Posted: October 23, 2009 
Due: October 30, 2009 at 12pm (noon) 
 
Task: Convert the JPEG encoder application into a SpecC model 
 
Instructions: 
 
The purpose of this assignment is to convert the JPEG Encoder reference code 
into an initial SpecC model of the digital camera with proper behavioral and 
structural hierarchy. 
Starting from the simplified, static code developed in the previous Assignment 2, 
(see reference /home/doemer/EECS222A_F09/jpegencoder1.tar.gz) 
we will gradually convert <name>.c/.h C files into <name>.sc/.sir SpecC 
modules. In the process, each module gets translated into one or more SpecC 
behaviors, which can then be hierarchically imported and composed into an 
overall design: 

1. Convert read.c, dct.c, quantize.c, zigzag.c and huffencode.c 
into corresponding .sc files. Introduce a single behavior of appropriate 
name in each file. Let the behavior encapsulate all local variables and 
functions (i.e. files must not have any variables or functions outside of 
behaviors). Convert the externally accessible function listed in the 
corresponding .h file into the behavior’s main method and replace 
parameters with equivalent behavior ports for external communication. 
Ensure that behaviors are free of side effects, i.e. that they only 
communicate with other behaviors through their ports and do not access 
any global variables outside of their body. 

2. Convert preshift, chendct and bound methods in dct.sc into 
separate behaviors and transform the Dct behavior into a sequential 
composition of these subbehaviors. Connect the child behaviors so that 
they communicate through variables mapped onto their ports. 

3. Introduce a new behavior and file huff.sc that implements the 
sequential composition of imported Zigzag and Huffencode child 
behaviors. Connect behavior ports to appropriate external ports or local 
variables throughout the hierarchy. 

4. Convert ReadBmp_aux.c and file.c into ReadBmp.sc and file.sc 
files that implement Stimulus and Monitor behaviors for the testbench, 
respectively. The Stimulus behavior reads the input file into a shared 
ScanBuffer port (ReadBmp) and then sends a start signal over a 



c_handshake channel. The Monitor reads bytes from a c_queue 
interface and writes them into an output file (FileWrite) continuously, one 
byte at a time until the end-of-file marker is reached. 

5. Convert jpegencoder.c into a jpegencoder.sc file and behavior that 
first waits for a start signal via a c_handshake interface and then 
executes ReadBlock, Dct, Quantize and Huff child behaviors 
sequentially in a loop. Let child behaviors communicate through variables 
mapped onto their ports and introduce external ports and mappings as 
necessary. 

6. Introduce a top-level digicam.sc file that contains the Main behavior 
implementing a typical testbench setup running Stimulus, 
JpegEncoder and Monitor subbehaviors concurrently: 

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff

 

The Stimulus is connected to the JpegEncoder through a shared 
ScanBuffer variable representing the CCD sensor array. In addition, a 
c_handshake channel represents the signal that the camera shutter has 
been triggered and that encoding of the CCD sensor picture should be 
started. At the other end, the Monitor receives a stream of encoded 
bytes from the Huffman encoder (Huffencode) through a c_queue 
representing the file I/O interface. 

7. Remove the .h files and compile all .sc sources into .sir files and 
check for compile errors. Finally, compile the top-level digicam.sc 
source into an executable and simulate the design. Validate the generated 
output against the known good data to ensure the design is working 
correctly. 

 

Note: Because of the multiple files in this design specification, it is highly 
recommended to update the Makefile in order to automate the compilation 
process using the make utility. 

If you are unfamiliar with make and the Makefile and want to avoid handling 
multiple files, you can create one large specification file instead (digicam.sc) 
which contains all code in a single file. 

 



Deliverables: 
 

Email to doemer@uci.edu with 
(a) Brief description (max. 5 sentences!) of the status of your model, and 
(b) Source code attached in a .tar.gz archive 
 
-- 
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu) 


