
EECS 222A
System-on-Chip Description and Modeling

Fall 2009

Assignment 5

Posted: November 6, 2009
Due: November 13, 2009 at 12pm (noon)

Task: Create a pipelined and synthesizable JPEG Encoder model

Instructions:

The purpose of this assignment is to finalize the SpecC specification model of the
digital camera example in order to obtain a clean and parallel/pipelined
specification model that conforms to the structure, rules, and guidelines
discussed in class and can be explored and synthesized using SCE.

We will start from the SpecC model developed in the previous Assignment 3. As
a reference solution, you may use the following model as starting point:

/home/doemer/EECS222A_F09/jpegencoder2.tar.gz

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff

1. Insert timing checks into the test bench: Update the Stimulus
behavior in ReadBmp.sc to wait for 1000 time units before sending the
start signal to the encoder. Make this start time available to the Monitor
behavior via a new variable start_time in the test bench. Let the
Monitor in file.sc print the total delay that the jpegencoder spends
on encoding of a single picture. Compile and simulate the model to ensure
that the timing info is printed correctly (the reported delay should be zero
at this point).

2. Develop an accurate model of the actual I/O structure for the digital
camera which consists of two dedicated I/O units read (for input) and
write (for output) that run in parallel to the jpegencoder: Move the
ReadBlock behavior outside of the JpegEncoder. Move the waiting for

the start signal into ReadBlock. Also, modify ReadBlock to
independently loop over all 180 blocks in a picture and send each block
into its outgoing queue after the start signal has been received. Introduce
a WriteBlock behavior (write.sc) that continuously reads bytes from
a queue and forwards them into an outgoing double-handshake channel.
Introduce an additional level of hierarchy as a Design behavior
(design.sc) that sits between Monitor and Stimulus and is a parallel
composition of ReadBlock, JpegEncoder and WriteBlock instances
communicating via c_queue channels. The input queue should have
space for 1 block of data, the output queue should be 512 bytes in size.
This all should result in the following structure:

Design Monitor

FileWrite()

Stimulus

ReadBmp()

Main
S

ca
nB

uf
fe

r

Jpeg WriteRead

3. Convert the JpegEncoder block into a pipelined parallel model: Remove
the ReadBlock instance (as discussed above) and change the top-level
JpegEncoder execution into a single par statement in which the three
remaining child behaviors communicate via c_typed_queue channels of
size 1 data block. Examples for use of typed queues are available in:

/home/doemer/EECS222A_F09/queue.sc
$SPECC/examples/sync/c_bit64_queue.sc
$SPECC/examples/sync/typed_queue.sc

4. Modify Dct, Quantize and Huff to infinitely work on continuous streams
of input and output data over c_int64_queue channels: Change the
sequential sub-composition inside Dct and Huff behaviors into a fsm
behavior that runs child behaviors sequentially in an endless loop.
Introduce an additional level of hierarchy in quantize.sc as a behavior
Quant that runs Quantize in an endlessly looping FSM. Replace the top-
level Quantize instance in JpegEncoder with Quant.

5. Compile and simulate the design model in SCE to validate its correctness.

6. Create a hierarchy chart that shows the entire hierarchy and connectivity
of your design. Print this chart in color (!) as a PS file and convert it to PDF
(in the shell, use ps2pdf digicam.ps). Your figure should match the

reference chart shown on the last page of these instructions (except for
being in color!).

Deliverables:

Email to doemer@uci.edu with

(a) Brief description (max. 5 sentences!) of the status of your model,

(b) Source code attached in a .tar.gz archive

(c) Your hierarchy chart digicam.pdf.

--

Rainer Doemer (EH3217, x4-9007, doemer@uci.edu)

Main

monitor
start_time
data

stimulus
ScanBuffer
start
start_time

design

da
ta

st
ar
t

Sc
an
Bu
ffe
r

st
ar
t_
tim
e

read

jpeg

write

ScanBuffer

start

data
dataout

dctin

dct

quant

dctin

data
dctout

quantizeout

huff

in
_d
at
a

ou
t_
da
ta

zi
gz
ag
ou
t

quantize
in_data
out_data

in
_d
at
a

bound
in_block
out_data

zigzag
in_data
out_block

chendct
in_block
out_block

tm
p1
_b
lo
ck

ou
t_
da
ta

tm
p2
_b
lo
ck

huffencode
in_block
data

preshift
in_data
out_block

in
_d
at
a

ou
t_
da
ta

	Assignment5
	jpegencoder3BW

