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Lecture 4: Overview

• Language Semantics
• Execution and Simulation Semantics

– Motivating Examples

• Simulation Semantics
– Discrete Event Simulator

• Formal Execution Semantics
– Time-Interval Formalism
– Abstract State Machines

• Project Discussion
– Digital Camera Example
– JPEG Application
– Assignment 2
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Language Semantics

• Concepts found in Embedded Systems
– Behavioral and structural hierarchy

– Concurrency

– Synchronization and communication

– Exception handling

– Timing

– State transitions

• SLDL must support these concepts

• Language semantics needed to define the meaning
– Semantics of execution (modeling, simulation, synthesis)

– Deterministic vs. non-deterministic behavior

– Preemptive vs. non-preemptive concurrency

– Atomic operations
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Language Semantics

• Language semantics are needed for
– System designer (understanding)
– Tools

• Validation (compilation, simulation)
• Formal verification (equivalence, property checking)
• Synthesis

– Documentation and standardization

• Objective:
– Clearly define the execution semantics of the language

• Requirements and goals:
– completeness
– precision (no ambiguities)
– abstraction (no implementation details)
– formality (enable formal reasoning)
– simplicity (easy understanding)
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Language Semantics

• Example: SpecC language
– Documentation

• Language Reference Manual (LRM)
 set of rules written in English (not formal)
• Abstract simulation algorithm
 set of valid implementations (not general)

– Reference implementation
• SpecC Reference Compiler and Simulator
 one instance of a valid implementation (not general)
• Compliance test bench
 set of specific test cases (incomplete)

– Formal execution semantics
• Time-interval formalism
 rule-based formalism (incomplete)
• Abstract State Machines
 fully formal approach (not easy to understand)
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Execution and Simulation Semantics

• Motivating Example 1
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
b1; b2;

}
};

behavior B1(int x)
{
void main(void)
{
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 2
– Given:

– What is the value of x after the execution of B?

– Answer: The program is non-deterministic!
(x may be 5, or 6, or any other value!)

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(int x)
{
void main(void)
{
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 3
– Given:

– What is the value of x after the execution of B?

– Answer: x = 5

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(int x)
{
void main(void)
{
waitfor 10;
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 4
– Given:

– What is the value of x after the execution of B?

– Answer: The program is non-deterministic!
(x may be 5, or 6, or any other value!)

behavior B
{
int x;
B1 b1(x);
B2 b2(x);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(int x)
{
void main(void)
{
waitfor 10;
x = 5;

}
};

behavior B2(int x)
{
void main(void)
{
waitfor 10;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 5
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 6
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
notify e;
x = 5;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 7
– Given:

– What is the value of x after the execution of B?

– Answer: x = 6

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
waitfor 10;
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
wait e;
x = 6;

}
};
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Execution and Simulation Semantics

• Motivating Example 8
– Given:

– What is the value of x after the execution of B?

– Answer: B never terminates!
(the event is lost)

behavior B
{
int x;
event e;
B1 b1(x,e);
B2 b2(x,e);

void main(void)
{
par{b1; b2;}

}
};

behavior B1(
int x, event e)

{
void main(void)
{
x = 5;
notify e;

}
};

behavior B2(
int x, event e)

{
void main(void)
{
waitfor 10;
wait e;
x = 6;

}
};
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– available in LRM (appendix), good for understanding

 set of valid implementations

 not general (possibly incomplete)

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N

• wait e1 will wakeup when e1 is in N

• Consumption of event e means event e is taken out of N

• Expiration of notified events means N is set to Ø
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO
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Simulation Semantics

• Discrete Event Simulation Algorithm for SpecC
– Conforms to general Discrete Event (DE) Simulation

• utilizes delta-cycle mechanism (i.e. inner event loop)

• matches execution semantics of other languages
– SystemC

– VHDL

– Verilog

– Features
• clearly specifies the simulation semantics

• is easily understandable

• can easily be implemented

– Generality
• is one valid implementation of the semantics

• other valid implementations may exist as well
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Formal Execution Semantics

• Two examples of semantics definition:
1) Time-interval formalism

• formal definition of timed execution semantics
• sequentiality, concurrency, synchronization
• allows reasoning over execution order, dependencies

2) Abstract State Machines
• complete execution semantics of SpecC V1.0

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• influence on the definition of SpecC V2.0
• straightforward extension for SpecC V2.0
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Formal Execution Semantics

• Time-interval formalism
– Definition of execution semantics of SpecC 2.0

• sequential execution
• concurrent execution (semantics of  par)

• synchronization (semantics of notify, wait)

– Sequential execution

behavior B1
{ void main(void)

{ a;
b;
c;

}
};

B1

a b c

time

Tstart(B1) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <= Tend(B1)
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• Time-interval formalism
– Sequential execution

• waitfor rule:
– only waitfor increases simulation time

– other statements execute in zero simulation time

behavior B
{ void main(void)

{ a;
waitfor 10;
b;

}
};

a w b

timet = 0 t = 1 t = 10 t = 11

0  <=  Tstart(a)  < Tend(a)  <    1
0  <=  Tstart(w) < Tend(w)  =  10

10 <=  Tstart(b)  < Tend(b)  <   11

Formal Execution Semantics
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Formal Execution Semantics

• Time-interval formalism
– Concurrent execution

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(b) < Tend(b) <=
Tstart(c) < Tend(c) <=   Tend(B)

Tstart(B) <= Tstart(d) < Tend(d) <=
Tstart(e) < Tend(e) <=
Tstart(f)  < Tend(f)  <=   Tend(B)

behavior B2
{ void main(void)
{ d; e; f; }

};

behavior B1
{ void main(void)
{ a; b; c; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

d

a b c

time

e f

B

Possible Schedule

Preemptive or non-preemptive scheduling:
No atomicity guaranteed!
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Formal Execution Semantics

• Time-interval formalism
– Synchronization

Tstart(B) <= Tstart(a) < Tend(a) <=
Tstart(w) < Tend(w) <=
Tstart(b) < Tend(b) <=   Tend(B)

Tstart(B) <= Tstart(c) < Tend(c) <=
Tstart(n) < Tend(n) <=
Tstart(d)  < Tend(d) <=  Tend(B)

behavior B2
{ void main(void)
{ c; notify e; d; }

};

behavior B1
{ void main(void)
{ a; wait e;   b; }

};

behavior B
{ void main(void)
{ par{ b1; b2;}
}

};

a

c n d

time

w b

Tend(w) >= Tend(n)
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• Time-interval formalism
– Atomicity

• Since there is no atomicity guaranteed,
a safe mechanism for mutual exclusion is necessary

• SpecC 2.0: Channels behave as Monitors!
– A mutex is implicitly contained in each channel instance

– Each channel method implicitly

» acquires the mutex when it starts execution, and

» releases the mutex again when it finishes
– wait and waitfor statements implicity (and atomically!)

» release an aquired mutex in a channel, and

» re-acquire the mutex before execution resumes

 This easily enables safe communication
without heavy restrictions to the implementation!

Formal Execution Semantics
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• Abstract State Machine (ASM)
– aka. Evolving Algebras (Y. Gurevich, 1987)
– ASM semantics already exist for

• Prolog, Concurrent Prolog
• C, C++, Java
• VHDL, VHDL-AMS, SystemC

– ASM semantics for SpecC published at ISSS’02

• ASM components
– Sequence of algebras (functions over domains):

states
– Rules define updates of functions:

state transitions

Formal Execution Semantics
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Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else  f(0,0) := 0

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else  f(0,0) := 0

ASM: Abstract State Machine

g    = 0
f(0) = undef
f(0,0) = 23
f(0,1) = 6

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else f(0,0) := 0

f(0) := 42
f(0,0) := 0

Update SetUpdate Set

Algebra A

g    = 0
f(0) = 42
f(0,0) = 0
f(0,1) = 6

Algebra A‘

Rules

if f(0) = undef
then f(0) := 42
else f(0) := 77

if f(0,0) = 0
then f(0,0) := 23
else  f(0,0) := 0

f(0) := 77
f(0,0) := 23

Update SetUpdate Set
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ASM: SpecC Kernel Semantics

• Phase 1: at least one BEHAVIOR is running

• Phase 2: no BEHAVIOR is running

ExecuteBehaviors

ProcessEvents

Check/ResetEvents

AdvanceTime

ProcessTimeouts

if events
if no events

exit
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ASM: SpecC Behavior Semantics

running

waiting

completed

interrupted

last stmt

interrupt

wait
waitfor

fork

event
timeout

join

trap

last stmt

status(p)  {running, waiting, interrupted, completed}
 BEHAVIOR:p
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ASM: SpecC Statement Semantics

• modelling execution of statements of behavior “Self”
Self executes <statement> 

programCounter(Self) = <statement>  status (Self) = running

• wait statement
if Self executes <waitwait(EventList(EventList))>
then status(Self) := waiting,

sensitivity (Self) := EventList,
programCounter(Self) := nextStmt(Self) 

endif;

• notify statement
if Self executes <notifynotify(EventList(EventList))>
then  e  EventList: notified(e)  := true, 

programCounter(Self) := nextStmt(Self)
endif;

• The simulation kernel sets each behavior to 
status(b):= running if e: notified(e) = true  e  sensitivity (b)
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ASM: SpecC Semantics Summary

• Formal Semantics of SpecC Execution 
• complete execution semantics of SpecC V1.0 by ASMs

• wait, notify, notifyone, par, pipe, traps, interrupts
• operational semantics (no data types!)

• can be easily extended to V2.0
• influenced the definition of SpecC V2.0
• SpecC ASM specification is comparable to 

other ASM specifications
• SystemC
• VHDL 93 
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Project Discussion

• Digital Camera Example
– Component Model

SoC

Jpeg
Encoder

CCD
Control

File
I/O

pixel bytes

Flash
Memory

CCD
Sensor

JpegEncoder

Read DCT Quant Huff
8x8

block
8x8

block
8x8

block
Pixel bytes
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When exposed to light, each 
cell becomes electrically 
charged. This charge can 
then be converted to a 8-bit 
value where 0 represents no 
exposure while 255 
represents very intense 
exposure of that cell to light.

Some of the columns are 
covered with a black strip of 
paint. The light-intensity of 
these pixels is used for zero-
bias adjustments of all the 
cells.

The electromechanical 
shutter is activated to expose 
the cells to light for a brief 
moment.

The electronic circuitry, when 
commanded, discharges the 
cells, activates the 
electromechanical shutter, 
and then reads the 8-bit 
charge value of each cell. 
These values can be clocked 
out of the CCD by external 
logic through a standard 
parallel bus interface.

Lens area

Pixel columns

Covered columns

Electronic 
circuitry

Electro-
mechanical 

shutter

P
ix

e
l r

ow
s

Project Discussion

• Digital Camera Example
– Charge-Coupled Device (CCD)

• Special sensor that captures an image

• Light-sensitive silicon solid-state device composed of many cells

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Image Compression

– JPEG (Joint Photographic Experts Group)
• Popular standard format for representing digital images 

in a compressed form

• Provides for a number of different modes of operation

• Mode used in this chapter provides high compression 
ratios using DCT (discrete cosine transform)

• Image data divided into blocks of 8 x 8 pixels

• 3 steps performed on each block
– DCT

– Quantization

– Huffman encoding

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Discrete Cosine Transform (DCT)

– Transforms original 8 x 8 block into a cosine-frequency domain
• Upper-left corner values represent low frequency components

– Essence of image

• Lower-right corner values represent finer details
– Can reduce precision of these values and retain reasonable image quality

– FDCT (Forward DCT) formula
• C(h) = if (h == 0) then 1/sqrt(2) else 1.0

– Auxiliary function used in main function F(u,v)

• F(u,v) = ¼ × C(u) × C(v) Σx=0..7 Σy=0..7 Dxy × cos(π(2u + 1)u/16) × cos(π(2y + 1)v/16)
– Gives encoded pixel at row u, column v

– Dxy is original pixel value at row x, column y

– IDCT (Inverse DCT)
• Reverses process to obtain original block

(not needed for this design)

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Quantization

– Achieve high compression ratio by reducing image quality
• Reduce bit precision of encoded data

– Fewer bits needed for encoding

– One way is to divide all values by a factor of 2

» Simple right shifts can do this

• Dequantization would reverse process for decompression

1150 39 -43 -10 26 -83 11 41
-81 -3 115 -73 -6 -2 22 -5
14 -11 1 -42 26 -3 17 -38
2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8
36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21
-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5
-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5
0 -8 -2 -2 5 -3 -2 1
6 2 5 -1 1 -3 1 -1
5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3
-1 -2 -1 -2 -1 0 1 -1

After DCT After quantization

Divide each cell’s 
value  by 8

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Huffman Encoding

– Serialize 8 x 8 block of pixels
• Values are converted into single list using zigzag pattern

– Perform Huffman encoding
• More frequently occurring pixels assigned short binary code

• Longer binary codes left for less frequently occurring pixels

– Each pixel in serial list converted to Huffman encoded values
• Much shorter list, thus compression

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Huffman Encoding (2)

144

5 3 2

1 0 -2

-1

-10 -5 -3

-4 -8 -9614

1 1

2

1 1

2

1

2
2

4

3

5

4

6
5

9

5

10

5

11

5

14

6

17

8

18
15

29

35

64

1

-1 15x 
0 8x
-2 6x
1 5x
2 5x
3 5x
5 5x
-3 4x
-5 3x

-10 2x
144 1x
-9 1x
-8 1x
-4 1x
6 1x

14 1x

-1 00

0 100

-2 110

1 010

2 1110

3 1010

5 0110

-3 11110

-5 10110

-10 01110

144 111111

-9 111110

-8 101111

-4 101110

6 011111

14 011110

Pixel 
frequency

Huffman tree
Huffman 
codes

• Pixel frequencies on left
– Pixel value –1 occurs 15 times
– Pixel value 14 occurs 1 time

• Build Huffman tree from bottom up
– Create one leaf node for each pixel

and assign frequency as node’s value
– Create an internal node by joining

any two nodes whose sum is
a minimal value

• This sum is internal nodes value

– Repeat until complete binary tree

• Traverse tree from root to leaf
to obtain binary code for leaf’s pixel value

– Append 0 for left traversal, 1 for right traversal

• Huffman encoding is reversible
– No code is a prefix of another code

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Component Model

– Homework Assigment 2
• Become familiar with JPEG Encoder Application

–Study reference code: 
/home/doemer/EECS222A_F09/jpegencoder.tar.gz

–Draw block diagram of files, functions, and key communication variables
–Simplify code for a 116×96 pixel CCD (eliminate malloc calls!)

SoC

Jpeg
Encoder

CCD
Control

File
I/O

pixel bytes

Flash
Memory

CCD
Sensor

JpegEncoder

Read DCT Quant Huff8x8
bloc

k

8x8
block

8x8
blockPixel bytes


