
EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 1

EECS 222A:
System-on-Chip Description and Modeling

Lecture 5

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 2

Lecture 4: Overview

• System-on-Chip Specification
– Essential issues
– Top-down SoC design flow
– Specification Model
– Specification Modeling Guidelines

• Current Research
– Computer-Aided Recoding

• Project Discussion
– Digital Camera Example
– JPEG Application
– Assignment 2
– Assignment 3

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 2

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 3

Essential Issues in Specification

• An Example ...

Proposed by the project team Product specification Product design by senior analyst

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 4

Top-Down SoC Design Flow

untimed

estimated timing

timing accurate

cycle accurate

constraints
T
I

M
I
N
Gpure functional

transaction level

bus functional

RTL / IS

requirements
S
T
R
U
C
T
U
R
E

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Comp.
IP

Implementation model

Software
synthesis

Interface
synthesis

Hardware
synthesis

RTOS
IP

RTL
IP

Architecture refinement

Capture

Communication model

Product specification

Manufacturing

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 3

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 5

Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure / architecture
– Pure behavioral hierarchy

• Untimed
– Execution in zero (logical) time

– Causal ordering

– Synchronization

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Source: A. Gerstlauer)

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 6

Specification Model

• Test bench
– Main, Stimulus, Monitor

– Simulation only, no synthesis (no modeling restrictions)

• DUT
– Design under test

– Simulation and synthesis! (restricted by modeling guidelines!)

Stimulus

v2

Monitor

v1

v4

v3
Main

DUT

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 4

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 7

Specification Modeling Guidelines

• Specification Model = “Golden” Reference Model
– first functional model in the top-down design flow
– all other models will be derived from and compared to this one

• High abstraction level
– no implementation details
– unrestricted exploration of design space

• Purely functional
– fully executable for functional validation
– no structural information

• No timing
– exception: timing constraints

• Separation of communication and computation
– channels and behaviors

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 8

Specification Modeling Guidelines

• Computation: in Behaviors
– Granularity: Leaf behaviors = smallest indivisible units

– Hierarchy: Explicit execution order
• Sequential, concurrent, pipelined, or FSM

– Encapsulation: Localized variables, explicit port mappings

– Concurrency: Potential parallelism explicitly specified

– Time: Untimed (partial order only)

• Communication: in Channels
– Communication: Standard channel library

– Synchronization: Standard channel library

– Dependencies: Data flow explicit in connectivity

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 5

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 9

Specification Modeling Guidelines

• Example: Guidelines for SoC Environment (SCE)
– Clean behavioral hierarchy

• hierarchical behaviors:
no code other than par, pipe, seq, fsm, and try-trap statements

• leaf behaviors:
Pure ANSI-C code (no SpecC constructs)

– Clean communication
• point-to-point communication via standard channels

• ports of plain type or interface type, no pointers!

• port maps to local variables or ports only

• Detailed rules for SoC Environment
– CECS Technical Report:

“SCE Specification Model Reference Manual”
by A. Gerstlauer, R. Dömer, et al.
• $SPECC/doc/SpecRM.pdf

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 10

Specification Modeling Guidelines

• Converting C reference code to SpecC
– Major functions become behaviors
– Function call tree becomes behavioral hierarchy

• Function call becomes behavior instance call
• Sequential statements become leaf behaviors
• Control flow becomes FSM

– Conditional statements, if, if-else, switch
– Loops, while, for, do

– Explicitly specify potential parallelism!
– Explicitly specify communication!

• Use standard channels, avoid shared variables
• No global variables
• Only local variables in behaviors and functions/methods

– Data types
• Avoid dynamic memory allocation
• Avoid pointers (arrays are preferred)
• Use explicit SpecC data types if suitable (e.g. bit vectors)

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 6

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 11

• Specification Model Generation
– It is desirable to automatically generate a Specification Model!

• Key Concepts needed for System Modeling
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Current Research

B0 B1

B2 B3

System Model

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 12

Current Research

• Existing System Design Flow
– Input: System model

– Output: MPSoC platform

• Actual Starting Point
– C reference code

– Flat, unstructured, sequential

– Insufficient for system exploration

• Need: System Model
– System-Level Description Language (SLDL)

– Well-structured
• Explicit computation, explicit communication

• Potential parallelism explicitly exposed

– Analyzable, synthesizable, verifiable

• Research: Automatic Re-Coding
– How to get from flat and sequential C code

to a flexible and parallel system model?

V1

func2()

func3()

V2 V3

func1()

C Code

B0 B1

B2 B3

System Model

M

M

P1 P2

IPIP

MPSoC Platform

M

Re-Coding

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 7

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 13

Recoding: Motivation

• Extend of Automation
– Refinement-based design flow
• Automatic

• Specification model down to
implementation

• Example: SCE (mostly automatic)
• MP3 decoder: less than 1 week

• Manual
• C reference code to

SpecC specification model
• Source code transformations
• MP3 decoder: 12-14 weeks!

• Automation Gap
– 90% of overall design time

is spent on re-coding!

• Research: Automatic Recoding

Automation GapManual 12-14 weeks

Less than
1 week

Automatic

C Reference Code

Specification Model

Architecture Model

Architecture Exploration

...

Communication Model

Comm. Exploration

Implementation

Source: System Design: A Practical Guide with SpecC

Recoding

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 14

Recoding: Problem Definition

• How to get from flat, sequential C code
to a flexible, parallel system model?

• Recoding
– Create structural hierarchy

– Partition code and data
• Expose concurrency (parallelize/pipeline)

– Expose communication

– Eliminate pointers

– Make the code compliant
to the design tools, …

• Current Research
– Computer-Aided Recoding

• Automated source code transformations

System Model

B0 B1

B2 B3

C1

C4

C2

C3

C
5

C
6

C code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

Recoding

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 8

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 15

Recoding: Overcoming the Specification Gap

Specification
Model

B0 B1

B2 B3

C1

C4

C2

C3

C
5

C
6

C Reference
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

GAP

Recoding

• Source-to-Source Transformations

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 16

Recoding: Overcoming the Specification Gap

• Step-wise Source-to-Source Transformations
– Creating structural hierarchy [ASPDAC’08]
– Code and data partitioning [DAC’07]
– Creating explicit communication [ASPDAC’07]
– Recode pointers [ISSS/CODES’07]

C Reference
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

Flexible
System Model

B0 B1

B2 B3

C1

C4

C2

C3

C
5

C
6

Expose Communication

…

Recode Pointers

Partitioned
Model

B0 B1

B2 B3

V1 V2 V3

Partition Code
and Data

B0

B1

B2

Hierarchical
Model

Create Hierarchy

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 9

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 17

Recoding: Creating Structural Hierarchy

• Goals
– Separation of computation and communication
– Explicit structure
– Static connectivity (to enable/simplify analysis!)

• Modeling Hierarchy
– Component blocks

• Ports, data direction
– Component instantiation

• Port map, connectivity

• Describing Hierarchy
– C code

• Global scope
• Local scope

– SLDLs
• Global scope
• Local scope
• Class scope

Syntactical hierarchy
in C code

Local variables

Global Variables
Global Functions

Parameters

Syntactical hierarchy
in SLDL code

Global Variables

Global Functions

Local variables
Parameters

Classes
Ports
Member variables
Instances
Methods

Local variables
Parameters

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 18

• Approach
– Convert functional hierarchy into structural hierarchy
– Step-wise model transformation
– Hierarchical encapsulation

• Utilize given function call tree
• Convert each function into a behavior
• Start with root (i.e. main() function)
• Continue step by step down to leafs

Recoding: Creating Structural Hierarchy

Functional Hierarchy Structural Hierarchy

f2()

f1()

f4()f3()

Model 0

B_f1

f2()

f4()f3()

Model 1

B_f1

B_f2

f3()

f4()

Model 2

B_f1

B_f2

B_f3

B_f4

Model 3

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 10

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 19

Recoding: Exposing Potential Parallelism

• Desirable model features
– Enable parallel execution
– Allow mapping

to different PEs

• Recoding tasks
– Partition code
– Partition data
– Synchronize dependents

• Recoding transformations
1. Loop splitting
2. Cumulative Access Type analysis
3. Partitioning of vector dependents
4. Synchronizing dependent variables
 [DAC’07, TCAD’08]

Code

Data

Code partitioning

Data partitioning

Synchronize

Data

Code Code Code

Code Code Code

Code Code Code

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 20

Recoding: Exposing Communication

Option-1 Option-2 Option-n…

Shared-Memory Model

B0 B1

B2 B3

V1 V2 V3

Explicit Communication Model

B0 B1

B2 B3

C1

C4

C2

C3

C
5

C
6

PE0

Memory

Architecture-1

Only Option

PE1

PE2 PE3

PE0

Architecture-2

PE1

PE2 PE3

• Shared-Memory Model
– Global variables limit the

number of possible
automatic explorations

• Explicit Communication
Model

– Enables automatic
exploration of more design
alternatives

• Quality of Communication Exploration
– Number of explorations

– Extent of automation

– Time

• Why create explicit communication?

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 11

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 21

Recoding: Exposing Communication (1)

• Localize global variables to
partitions
– To enable multiple explorations

• Procedure
– Find the global variable

– Determine the functions and behaviors
accessing it

– If only one behavior is accessing it,
migrate the variable into this behavior

Implicit
Dependency

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Localize
R1, R2

Behavioral
Model

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 22

Recoding: Exposing Communication (2)

Data Flow/ Explicit
connectuivity

Implicit
Dependency

Read port Write port

• Localize global variables to
common parent and provide
explicit access
– Simplifies subsequent analysis

of models

• Procedure
– Find the global variable

– Determine the functions and behaviors
accessing it

– If multiple behaviors are accessing it,
find the lowest common parent

– Migrate the variable to the parent

– Provide access to the variable by
recursively inserting ports in behaviors

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Localize
R1, R2

Make explicit data
connections RW1,

RW2

Behavioral
Model

RW2

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 12

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 23

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Explicit connectivity

Localize
R1, R2

Make explicit data
connections RW1,

RW2

Block -2Block -1

R1 R2

C1 C2

Establish
Synchronization

RW1, RW2

Recoding: Exposing Communication (3)

Behavioral
Model

Read port

Write port

Implicit
Dependency

• Use message passing channels
instead of variables
– Defines synchronization scheme

– Guides exploration tools

• Procedure
– Create a typed synchronization channel

– Replace the ports
corresponding to the original variable
with the channel interface type

– Modify each access to the variable
to call the appropriate interface function
of the channel

• read() / receive()

• write() / send()

RW2

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 24

Recoding: References

• [ASPDAC’07] P. Chandraiah, J. Peng, R. Dömer, "Creating Explicit Communication in SoC
Models Using Interactive Re-Coding", Proceedings of the Asia and South Pacific Design
Automation Conference 2007, Yokohama, Japan, January 2007.

• [IESS’07] P. Chandraiah, R. Dömer, "An Interactive Model Re-Coder for Efficient SoC
Specification", Proceedings of the International Embedded Systems Symposium,
"Embedded System Design: Topics, Techniques and Trends" (ed. A. Rettberg, M. Zanella,
R. Dömer, A. Gerstlauer, F. Rammig), Springer, Irvine, California, May 2007.

• [DAC’07] P. Chandraiah, R. Dömer, "Designer-Controlled Generation of Parallel and
Flexible Heterogeneous MPSoC Specification", Proceedings of the Design Automation
Conference 2007, San Diego, California, June 2007.

• [ISSS+CODES’07] P. Chandraiah, R. Dömer, "Pointer Re-coding for Creating Definitive
MPSoC Models", Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, Salzburg, Austria, September 2007.

• [ASPDAC’08] P. Chandraiah, R. Dömer, "Automatic Re-coding of Reference Code into
Structured and Analyzable SoC Models", Proceedings of the Asia and South Pacific Design
Automation Conference 2008, Seoul, Korea, January 2008.

• [TCAD’08] P. Chandraiah, R. Dömer, “Code and Data Structure Partitioning for Parallel and
Flexible MPSoC Specification Using Designer-Controlled Re-Coding”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems vol. 27, no. 6, pp. 1078-1090,
June 2008.

• [DATE’09] R. Leupers, A. Vajda, M. Bekooij, S. Ha, R. Dömer, A. Nohl, "Programming
MPSoC Platforms: Road Works Ahead!", Proceedings of Design Automation and Test in
Europe, Nice, France, April 2009.

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 13

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 25

Project Discussion

• Digital Camera Example
– Component Model

SoC

Jpeg
Encoder

CCD
Control

File
I/O

pixel bytes

Flash
Memory

CCD
Sensor

JpegEncoder

Read DCT Quant Huff
8x8

block
8x8

block
8x8

block
Pixel bytes

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 26

When exposed to light, each
cell becomes electrically
charged. This charge can
then be converted to a 8-bit
value where 0 represents no
exposure while 255
represents very intense
exposure of that cell to light.

Some of the columns are
covered with a black strip of
paint. The light-intensity of
these pixels is used for zero-
bias adjustments of all the
cells.

The electromechanical
shutter is activated to expose
the cells to light for a brief
moment.

The electronic circuitry, when
commanded, discharges the
cells, activates the
electromechanical shutter,
and then reads the 8-bit
charge value of each cell.
These values can be clocked
out of the CCD by external
logic through a standard
parallel bus interface.

Lens area

Pixel columns

Covered columns

Electronic
circuitry

Electro-
mechanical

shutter

P
ix

e
l r

ow
s

Project Discussion

• Digital Camera Example
– Charge-Coupled Device (CCD)

• Special sensor that captures an image

• Light-sensitive silicon solid-state device composed of many cells

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 14

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 27

Project Discussion

• Digital Camera Example
– Image Compression

– JPEG (Joint Photographic Experts Group)
• Popular standard format for representing digital images

in a compressed form

• Provides for a number of different modes of operation

• Mode used in this chapter provides high compression
ratios using DCT (discrete cosine transform)

• Image data divided into blocks of 8 x 8 pixels

• 3 steps performed on each block
– DCT

– Quantization

– Huffman encoding

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 28

Project Discussion

• Digital Camera Example
– Discrete Cosine Transform (DCT)

– Transforms original 8 x 8 block into a cosine-frequency domain
• Upper-left corner values represent low frequency components

– Essence of image

• Lower-right corner values represent finer details
– Can reduce precision of these values and retain reasonable image quality

– FDCT (Forward DCT) formula
• C(h) = if (h == 0) then 1/sqrt(2) else 1.0

– Auxiliary function used in main function F(u,v)

• F(u,v) = ¼ × C(u) × C(v) Σx=0..7 Σy=0..7 Dxy × cos(π(2u + 1)u/16) × cos(π(2y + 1)v/16)
– Gives encoded pixel at row u, column v

– Dxy is original pixel value at row x, column y

– IDCT (Inverse DCT)
• Reverses process to obtain original block

(not needed for this design)

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 15

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 29

Project Discussion

• Digital Camera Example
– Quantization

– Achieve high compression ratio by reducing image quality
• Reduce bit precision of encoded data

– Fewer bits needed for encoding

– One way is to divide all values by a factor of 2

» Simple right shifts can do this

• Dequantization would reverse process for decompression

1150 39 -43 -10 26 -83 11 41
-81 -3 115 -73 -6 -2 22 -5
14 -11 1 -42 26 -3 17 -38
2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8
36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21
-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5
-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5
0 -8 -2 -2 5 -3 -2 1
6 2 5 -1 1 -3 1 -1
5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3
-1 -2 -1 -2 -1 0 1 -1

After DCT After quantization

Divide each cell’s
value by 8

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 30

Project Discussion

• Digital Camera Example
– Huffman Encoding

– Serialize 8 x 8 block of pixels
• Values are converted into single list using zigzag pattern

– Perform Huffman encoding
• More frequently occurring pixels assigned short binary code

• Longer binary codes left for less frequently occurring pixels

– Each pixel in serial list converted to Huffman encoded values
• Much shorter list, thus compression

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 16

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 31

Project Discussion

• Digital Camera Example
– Huffman Encoding (2)

144

5 3 2

1 0 -2

-1

-10 -5 -3

-4 -8 -9614

1 1

2

1 1

2

1

2
2

4

3

5

4

6
5

9

5

10

5

11

5

14

6

17

8

18
15

29

35

64

1

-1 15x
0 8x
-2 6x
1 5x
2 5x
3 5x
5 5x
-3 4x
-5 3x

-10 2x
144 1x
-9 1x
-8 1x
-4 1x
6 1x

14 1x

-1 00

0 100

-2 110

1 010

2 1110

3 1010

5 0110

-3 11110

-5 10110

-10 01110

144 111111

-9 111110

-8 101111

-4 101110

6 011111

14 011110

Pixel
frequency

Huffman tree
Huffman
codes

• Pixel frequencies on left
– Pixel value –1 occurs 15 times
– Pixel value 14 occurs 1 time

• Build Huffman tree from bottom up
– Create one leaf node for each pixel

and assign frequency as node’s value
– Create an internal node by joining

any two nodes whose sum is
a minimal value

• This sum is internal nodes value

– Repeat until complete binary tree

• Traverse tree from root to leaf
to obtain binary code for leaf’s pixel value

– Append 0 for left traversal, 1 for right traversal

• Huffman encoding is reversible
– No code is a prefix of another code

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 32

Project Discussion

• Digital Camera Example
– Component Model

– Homework Assigment 2
• Become familiar with JPEG Encoder Application

–Study reference code:
/home/doemer/EECS222A_F09/jpegencoder.tar.gz

–Draw block diagram of files, functions, and key communication variables
–Simplify code for a 116×96 pixel CCD (eliminate malloc calls!)

SoC

Jpeg
Encoder

CCD
Control

File
I/O

pixel bytes

Flash
Memory

CCD
Sensor

JpegEncoder

Read DCT Quant Huff8x8
bloc

k

8x8
block

8x8
blockPixel bytes

EECS222A: SoC Description and
Modeling

Lecture 5

(c) 2009 R. Doemer 17

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 33

Homework Assignment 3

• Task
– Convert JPEG Encoder Application

to a proper SpecC Specification Model

• Deliverables
– Email to doemer@uci.edu with subject

“EECS222A Assignment 3”
• Brief status description (in body of your email)
• Source code jpegencoder.tar.gz (attachment)

• Due
– Next week: October 30, 2009, 12pm (noon)

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 34

Homework Assignment 3

• Hint:
– Use the sir_tree tool to validate your hierarchy

– The final model should look like this:

doemer@epsilon.eecs.uci.edu:3 > sir_tree -blt digicam.sir
B i o behavior Main
B i o |------ JpegEncoder jpeg
B i s | |------ Dct dct
B i l | | |------ Bound bound
B i l | | |------ ChenDct chendct
B i l | | \------ Preshift preshift
B i s | |------ Huff huff
B i l | | |------ Huffencode huffencode
B i l | | \------ Zigzag zigzag
B i l | |------ Quantize quantize
B i l | \------ ReadBlock readblock
B i l |------ Monitor monitor
B i l |------ Stimulus stimulus
C i l |------ c_queue data
C i l \------ c_handshake start

