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« An Example ...
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Essential Issues in Specification

=

Product design by senior analyst

=

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author
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Lecture 5
Modeling

Specification Model

* High-level, abstract model
— Pure system functionality
— Algorithmic behavior AR el
— No implementation details

* No implicit structure / architecture
— Pure behavioral hierarchy

Specification model

Architecture model

ommunication refinement

. Communication model
* Untimed :
— Execution in zero (logical) time

— Causal ordering
— Synchronization

HEHE

Implementation model

(Source: A. Gerstlauer)
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Specification Model

 Test bench

— Main, Stimulus, Monitor
— Simulation only, no synthesis (no modeling restrictions)
« DUT
— Design under test
— Simulation and synthesis! (restricted by modeling guidelines!)

M —
e £ 1
S
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Specification Modeling Guidelines

» Specification Model = “Golden” Reference Model
— first functional model in the top-down design flow
— all other models will be derived from and compared to this one
* High abstraction level
— no implementation details
— unrestricted exploration of design space
* Purely functional
— fully executable for functional validation
— no structural information
* No timing
— exception: timing constraints
» Separation of communication and computation
— channels and behaviors
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Specification Modeling Guidelines

» Computation: in Behaviors

— Granularity: Leaf behaviors = smallest indivisible units
— Hierarchy: Explicit execution order

» Sequential, concurrent, pipelined, or FSM
— Encapsulation: Localized variables, explicit port mappings
— Concurrency: Potential parallelism explicitly specified
— Time: Untimed (partial order only)

« Communication: in Channels
— Communication:  Standard channel library
— Synchronization:  Standard channel library
— Dependencies: Data flow explicit in connectivity
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Specification Modeling Guidelines

Example: Guidelines for SoC Environment (SCE)

— Clean behavioral hierarchy

* hierarchical behaviors:
no code other than par, pipe, seq, fsm, and try-trap statements

* leaf behaviors:
Pure ANSI-C code (no SpecC constructs)
— Clean communication
+ point-to-point communication via standard channels
 ports of plain type or interface type, no pointers!
+ port maps to local variables or ports only

Detailed rules for SoC Environment

— CECS Technical Report:
“SCE Specification Model Reference Manual”
by A. Gerstlauer, R. Démer, et al.
* $SPECC/doc/SpecRM.pdf
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Specification Modeling Guidelines

Converting C reference code to SpecC
— Major functions become behaviors
Function call tree becomes behavioral hierarchy
» Function call becomes behavior instance call
» Sequential statements become leaf behaviors
+ Control flow becomes FSM
— Conditional statements, if, if-else, switch
— Loops, while, for, do
Explicitly specify potential parallelism!
Explicitly specify communication!
« Use standard channels, avoid shared variables
* No global variables
» Only local variables in behaviors and functions/methods
Data types
* Avoid dynamic memory allocation
+ Avoid pointers (arrays are preferred)
+ Use explicit SpecC data types if suitable (e.g. bit vectors)
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Current Research

» Specification Model Generation
— ltis desirable to automatically generate a Specification Model!

» Key Concepts needed for System Modeling
— Explicit Structure
» Block diagram structure
» Connectivity through ports /’_
— Explicit Hierarchy -
» System composed of components
— Explicit Concurrency - - @-
B2

System Model

» Potential for parallel execution

» Potential for pipelined execution
— Explicit Communication and Computation \—

» Channels and Interfaces

» Behaviors / Modules
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Current Research

C Code

+ Existing System Design Flow | I | I
— Input: System model funct()
— Output: MPSoC platform func2)
* Actual Starting Point L=
— C reference code Re'COdlng l

System Model

— Flat, unstructured, sequential
— Insufficient for system exploration

Need: System Model
— System-Level Description Language (SLDL)
—  Well-structured
« Explicit computation, explicit communication
» Potential parallelism explicitly exposed
— Analyzable, synthesizable, verifiable

Research: Automatic Re-Coding

MPSoC Platform
e ] &1 [e]
| | |

— How to get from flat and sequential C code

to a flexible and parallel system model?

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 12

(c) 2009 R. Doemer

Lecture 5



EECS222A: SoC Description and

Modeling

Recoding: Motivation

« Extend of Automation - -+
— Refinement-based design flow mmmmt—- oo
* Automatic Manual : Recoding : 12-14 weeks

» Specification model down to 1
implementation

+ Example: SCE (mostly automatic)

* MP3 decoder: less than 1 week

* Manual

» C reference code to
SpecC specification model

» Source code transformations

* MP3 decoder: 12-14 weeks!

» Automation Gap
— 90% of overall design time H

is spent on re-coding! !

« Research: Automatic Recoding =+

Specification Model —

|Architecture Exploration |

Automatic C_Architecture Model

I

Less than
| 1 week

| Comm. Exploration

Source: System Design: A Practical Guide with SpecC

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 13

Recoding: Problem Definition

. '
How to get from flat, sequential C code =L
to a flexible, parallel system model? o

. :
Recoding -
— Create structural hierarchy s () 1]
— Partition code and data C code

» Expose concurrency (parallelize/pipeline)
Expose communication
Eliminate pointers
Make the code compliant
to the design tools, ...
» Current Research

— Computer-Aided Recoding
* Automated source code transformations

System Model
(c) 2009 R. Doemer 14
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Recoding: Overcoming the Specification Gap

» Source-to-Source Transformations

Recoding

_—

C Reference Specification
Model Model

funcl () {...}

fune2 (..) {...} !
func3 (...) {...} i GAP
funcd (...) {...} 1

func5 (...) {...}

func6 (..) {...}
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Recoding: Overcoming the Specification Gap

Step-wise Source-to-Source Transformations
Creating structural hierarchy [ASPDAC’08]
Code and data partitioning [DAC’07]

Creating explicit communication [ASPDAC’07]
— Recode pointers [ISSS/CODES’07]

Create Hierarchy Partition Code = Expose Communication = Recode Pointers
—md Data
C Reference Hierarchical Partitioned Flexible
Model Model Model System Model
(oo | B0
1 \
func5 (...) {...}
‘
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Recoding: Creating Structural Hierarchy

* Goals
— Separation of computation and communication
— Explicit structure
— Static connectivity (to enable/simplify analysis!)
* Modeling Hierarchy
— Component blocks

* Ports, data direction Syntactical hierarchy
— Component instantiation in SLDL code
* Port map, connectivity Global Variables
» Describing Hierarchy Global Functions
Syntactical hierarchy Parameters
— Ccode in C code Local variables
+ Global scope . Classes
- Local scope I:: Global Varlaples Ports
SLDL Global Functions Member variables
- S Parameters Instances
* Global scope Local variables Methods
* Local scope E Parameters
+ Class scope Local variables
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Recoding: Creating Structural Hierarchy

* Approach
— Convert functional hierarchy into structural hierarchy
— Step-wise model transformation
— Hierarchical encapsulation
 Utilize given function call tree
» Convert each function into a behavior
« Start with root (i.e. main () function)
» Continue step by step down to leafs

Model 0 Model 1 Model 2 Model 3
B f1 B f1

@ B_f2

©)

Functional Hierarchy Structural Hierarchy

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer 18

(c) 2009 R. Doemer

Lecture 5



EECS222A: SoC Description and
Modeling

» Desirable model features
— Enable parallel execution

— Allow mapping
to different PEs

* Recoding tasks
— Partition code

— Synchronize dependents
* Recoding transformations
1. Loop splitting
2. Cumulative Access Type analysis

4. Synchronizing dependent variables
» [DAC’07, TCAD’08]

Recoding: Exposing Potential Parallelism

— Partition data Data partitioning

Code

3. Partitioning of vector dependents Synchronize
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» Why create explicit communication?

* Quality of Communication Exploration
— Number of explorations Shared-Memory Model
— Extent of automation
— Time

* Shared-Memory Model

— Global variables limit the
number of possible

automatic explorations Only o.,m,.l /
o Option-1

B2

Model

— Enables automatic

alternatives Architecture-1

Recoding: Exposing Communication

Explicit Communication Model

EE
« Explicit Communication
exploration of more design

EECS222A: SoC Description and Modeling, Lecture 5 (c) 2009 R. Doemer

@ i
= ]

.x Opti

20

nnnnn

(c) 2009 R. Doemer

Lecture 5

10



EECS222A: SoC Description and
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Recoding: Exposing Communication (1)

* Localize global variables to
partitions
— To enable multiple explorations

* Procedure
— Find the global variable
— Determine the functions and behaviors
accessing it
— If only one behavior is accessing it,
migrate the variable into this behavior

EECS222A: SoC Description and Modeling, Lecture 5

.

r
v 7
Block -1
1

)

r

G

lock -1

= 3
=
Block -2
V)

(c) 2009 R. Doemer

Behavioral
Model

Localize
R1, R2

Implicit
Dependency

21

Recoding: Exposing Communication (2)
‘ Behavioral

= = 0
oA (AT
. J

* Localize global variables to
common parent and provide
explicit access

— Simplifies subsequent analysis
of models

* Procedure
— Find the global variable

— Determine the functions and behaviors
accessing it

— If multiple behaviors are accessing it,
find the lowest common parent

— Migrate the variable to the parent

— Provide access to the variable by
recursively inserting ports in behaviors

EECS222A: SoC Description and Modeling, Lecture 5

AReadport W Wiite port

_____ > Implicit
Dependency

(c) 2009 R. Doemer

Model

Localize
R1,R2

Make explicit dat3
connections RW1
RW2

Data Flow/ Explicit
connectuivity

22
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Recoding: Exposing Communication (3)
Behavioral
= ~ ~ *N

Model

Use message passing channels

instead of variables
— Defines synchronization scheme Localize
. . R1, R2
— Guides exploration tools
----- > Dependency
Procedure
— Create a typed synchronization channel Make explicit dat4

— Replace the ports

corresponding to the original variable RW2
with the channel interface type At
— Modify each access to the variable W Wiite port
to call the appropriate interface function
of the channel Establish
» read() / receive() Synchronization
+ write() / send() RW1, RW2

» Explicit connectivity
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connections RW1

Recoding: References

+ [ASPDAC’07] P. Chandraiah, J. Peng, R. Domer, "Creating Explicit Communication in SoC
Models Using Interactive Re-Coding", Proceedings of the Asia and South Pacific Design
Automation Conference 2007, Yokohama, Japan, January 2007.

« [IESS’07] P. Chandraiah, R. Démer, "An Interactive Model Re-Coder for Efficient SoC
Specification”, Proceedings of the International Embedded Systems Symposium,
"Embedded System Design: Topics, Techniques and Trends" (ed. A. Rettberg, M. Zanella,
R. Démer, A. Gerstlauer, F. Rammig), Springer, Irvine, California, May 2007.

« [DAC’07] P. Chandraiah, R. Démer, "Designer-Controlled Generation of Parallel and
Flexible Heterogeneous MPSoC Specification", Proceedings of the Design Automation
Conference 2007, San Diego, California, June 2007.

+ [ISSS+CODES’07] P. Chandraiah, R. Domer, "Pointer Re-coding for Creating Definitive
MPSoC Models", Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, Salzburg, Austria, September 2007.

* [ASPDAC’08] P. Chandraiah, R. Démer, "Automatic Re-coding of Reference Code into
Structured and Analyzable SoC Models", Proceedings of the Asia and South Pacific Design
Automation Conference 2008, Seoul, Korea, January 2008.

+ [TCAD’08] P. Chandraiah, R. Domer, “Code and Data Structure Partitioning for Parallel and
Flexible MPSoC Specification Using Designer-Controlled Re-Coding”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems vol. 27, no. 6, pp. 1078-1090,
June 2008.

+ [DATE'09] R. Leupers, A. Vajda, M. Bekooij, S. Ha, R. Démer, A. Nohl, "Programming
MPSoC Platforms: Road Works Ahead!", Proceedings of Design Automation and Test in
Europe, Nice, France, April 2009.
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Project Discussion

+ Digital Camera Example
— Component Model

Flash

CCD SoC
Sensor e
CCD
Control
\\

pixel Jpeg
Encoder

bytes

File

110

B Memory

JpegEncoder
Pixel Read ]W’[ DCT ]W{Quant]m{ Huff bytes
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Project Discussion

+ Digital Camera Example

— Charge-Coupled Device (CCD)

» Special sensor that captures an image

+ Light-sensitive silicon solid-state device composed of many cells

When exposed to light, each
cell becomes electrically
charged. This charge can

Lens area

then be converted to a 8-bit
value where 0 represents no
exposure while 255
represents very intense
exposure of that cell to light.

Some of the columns are
covered with a black strip of —
paint. The light-intensity of
these pixels is used for zero-
bias adjustments of all the

\ Pixel rows

\Covered columns

%/—/

Pixel columns

Electro-
mechanical
shutter

Electronic
circuitry

cells.

The electromechanical
shutter is activated to expose
the cells to light for a brief
moment.

The electronic circuitry, when
commanded, discharges the
cells, activates the
electromechanical shutter,
and then reads the 8-bit
charge value of each cell.
These values can be clocked
out of the CCD by external
logic through a standard
parallel bus interface.

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

+ Digital Camera Example
— Image Compression
— JPEG (Joint Photographic Experts Group)

» Popular standard format for representing digital images
in a compressed form

* Provides for a number of different modes of operation

* Mode used in this chapter provides high compression
ratios using DCT (discrete cosine transform)

» Image data divided into blocks of 8 x 8 pixels
» 3 steps performed on each block

- DCT

— Quantization

— Huffman encoding

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

» Digital Camera Example
Discrete Cosine Transform (DCT)

Transforms original 8 x 8 block into a cosine-frequency domain
» Upper-left corner values represent low frequency components
— Essence of image
» Lower-right corner values represent finer details
— Can reduce precision of these values and retain reasonable image quality

FDCT (Forward DCT) formula
* C(h) =if (h == 0) then 1/sqrt(2) else 1.0
— Auxiliary function used in main function F(u,v)
¢ F(u,v) = %4 x C(u) ¥ C(V) Zx=0.7 Zy=0.7 Dxy X cos(n(2u + 1)u/16) x cos(n(2y + 1)v/16)
— Gives encoded pixel at row u, column v

— Dwis original pixel value at row x, column y

IDCT (Inverse DCT)

* Reverses process to obtain original block
(not needed for this design)

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

» Digital Camera Example
— Quantization
— Achieve high compression ratio by reducing image quality
* Reduce bit precision of encoded data
— Fewer bits needed for encoding
— One way is to divide all values by a factor of 2
» Simple right shifts can do this
» Dequantization would reverse process for decompression

1150] 39] 43] -10] 26] 83| 11| 41 - . [144] 5[ 5[ A 3[40 1 5
=1 a5 73 s 2 =5 Divide each cell's —g—or—a— [ o 3 =1
14 1| 1| 42| 26| -3] 17| -39 value by 8 2] 4] o] 5] 3] o 2] 5
2| 61| 13| 12| 36| 23] 18] 5| o 8] 2| 2| 5 3] 2 1
24] 13| 37| 4| 10] 21| 7] § 4’ 6 2] 5| 4] 1] 3] 1
36] 11| -9 4| 20 28] 21| 14 5 1] | ] 3] 4] 3 2
19| 7| 21| 6| 3] 3| 12] 21 2 1] 3] 4] o o 2 3
-5 -13| 11| -17 -4 -1 7 -4 -1 -2 -1 -2 -1 0 1 -1
After DCT After quantization

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

» Digital Camera Example
— Huffman Encoding
— Serialize 8 x 8 block of pixels
» Values are converted into single list using zigzag pattern

— > 2 T
AT A A
f‘/,///'/,////;
V/,/,///////J’
v‘/,v/ ,/‘// e ,/'/ A
VAT A S
Pl =< G =N

— Perform Huffman encoding
* More frequently occurring pixels assigned short binary code
» Longer binary codes left for less frequently occurring pixels
— Each pixel in serial list converted to Huffman encoded values

* Much shorter list, thus compression
Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

» Digital Camera Example

— Huffman Encoding (2) Pixel Huffman tree Huﬁ;man
frequency codes
 Pixel frequencies on left A [15x 3 :’go
. . 08
— Pixel value —1 occurs 15 times ) ei 2 [110
— Pixel value 14 occurs 1 time 1[5 ; ?1:’0
. 2 |5
* Build Huffman tree from bottom up S 3 [1010
— Create one leaf node for each pixel 5 | 5x 53 :’E?o
and assign frequency as node’s value :g ‘s‘i = Tioto
— Create an internal node by joining 10| 2x -10 [o1110
any two nodes whose sum is 144 x 144 [111111
a minimal value 9 [ x jg e
« This sum is internal nodes value j K 2 101110
— Repeat until complete binary tree 6 | ix 164 011111
011110)]
+ Traverse tree from root to leaf L

to obtain binary code for leaf’s pixel value
— Append 0 for left traversal, 1 for right traversal
» Huffman encoding is reversible
— No code is a prefix of another code

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

+ Digital Camera Example
— Component Model

CCD SoC Flash

Sensor ccb Jpeg File Memory
] Control Encoder /10

JpegEncoder
Pixel Read ]—5:5’[ DCT ]—b‘/‘;‘i’[ Quant ]—.ﬁ;ﬁ.[ Huff bytes
K

— Homework Assigment 2

» Become familiar with JPEG Encoder Application

—Study reference code:
/home/doemer/EECS222A F09/jpegencoder.tar.gz

—Draw block diagram of files, functions, and key communication variables
—Simplify code for a 116x96 pixel CCD (eliminate malloc calls!)
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Homework Assignment 3

 Task

— Convert JPEG Encoder Application
to a proper SpecC Specification Model

Main

Stimulus Monitor

ReadBmp() FileWrite()

* Deliverables
— Email to doemer@uci.edu with subject
“EECS222A Assignment 3”
« Brief status description (in body of your email)
» Source code jpegencoder. tar.gz (attachment)
* Due
— Next week: October 30, 2009, 12pm (noon)
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Homework Assignment 3

* Hint:
— Use the sir_tree tool to validate your hierarchy
— The final model should look like this:

doemer@epsilon.eecs.uci.edu:3 > sir tree -blt digicam.sir
io behavior Main

| ====== JpegEncoder jpeg

| | emmmm= Dct dct

| | |-———-- Bound bound

| I |——==—-= ChenDct chendct

| I \-————= Preshift preshift

| | ====== Huff huff

| | | ====== Huffencode huffencode
| I \-===—= zigzag zigzag

| | =====- Quantize quantize

| \-———-- ReadBlock readblock

| -==—==-- Monitor monitor

| —===== Stimulus stimulus

|ome=e= c_queue data

\-————- c_handshake start

QOO WwWwoweoweoweoweoweowowowoww
L T o o o o O !
HFHHHRKHKRHHFODHFHKFKF®BO
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