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Lecture 4: Overview

• System-on-Chip Specification
– Essential issues
– Top-down SoC design flow
– Specification Model
– Specification Modeling Guidelines

• Current Research
– Computer-Aided Recoding

• Project Discussion
– Digital Camera Example
– JPEG Application
– Assignment 2
– Assignment 3
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Essential Issues in Specification

• An Example ...

Proposed by the project team Product specification Product design by senior analyst

Product after implementation Product after acceptance by user What the user wanted

Source: unknown author
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Top-Down SoC Design Flow
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Specification Model

• High-level, abstract model
– Pure system functionality

– Algorithmic behavior

– No implementation details

• No implicit structure / architecture
– Pure behavioral hierarchy

• Untimed
– Execution in zero (logical) time

– Causal ordering

– Synchronization

Specification model

Architecture refinement

Architecture model

Communication model

Implementation model

Communication refinement

Cycle-accurate refinement

(Source: A. Gerstlauer)
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Specification Model

• Test bench
– Main, Stimulus, Monitor

– Simulation only, no synthesis (no modeling restrictions)

• DUT
– Design under test

– Simulation and synthesis! (restricted by modeling guidelines!)

Stimulus

v2

Monitor

v1

v4

v3
Main

DUT
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Specification Modeling Guidelines

• Specification Model = “Golden” Reference Model
– first functional model in the top-down design flow
– all other models will be derived from and compared to this one

• High abstraction level
– no implementation details
– unrestricted exploration of design space

• Purely functional
– fully executable for functional validation
– no structural information

• No timing
– exception: timing constraints

• Separation of communication and computation
– channels and behaviors
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Specification Modeling Guidelines

• Computation: in Behaviors
– Granularity: Leaf behaviors = smallest indivisible units

– Hierarchy: Explicit execution order
• Sequential, concurrent, pipelined, or FSM

– Encapsulation: Localized variables, explicit port mappings

– Concurrency: Potential parallelism explicitly specified

– Time: Untimed (partial order only)

• Communication: in Channels
– Communication: Standard channel library

– Synchronization: Standard channel library

– Dependencies: Data flow explicit in connectivity
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Specification Modeling Guidelines

• Example: Guidelines for SoC Environment (SCE)
– Clean behavioral hierarchy

• hierarchical behaviors:
no code other than par, pipe, seq, fsm, and  try-trap statements

• leaf behaviors:
Pure ANSI-C code (no SpecC constructs)

– Clean communication
• point-to-point communication via standard channels

• ports of plain type or interface type, no pointers!

• port maps to local variables or ports only

• Detailed rules for SoC Environment
– CECS Technical Report:

“SCE Specification Model Reference Manual”
by A. Gerstlauer, R. Dömer, et al.
• $SPECC/doc/SpecRM.pdf
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Specification Modeling Guidelines

• Converting C reference code to SpecC
– Major functions become behaviors
– Function call tree becomes behavioral hierarchy

• Function call becomes behavior instance call
• Sequential statements become leaf behaviors
• Control flow becomes FSM

– Conditional statements, if, if-else, switch
– Loops, while, for, do

– Explicitly specify potential parallelism!
– Explicitly specify communication!

• Use standard channels, avoid shared variables
• No global variables
• Only local variables in behaviors and functions/methods

– Data types
• Avoid dynamic memory allocation
• Avoid pointers (arrays are preferred)
• Use explicit SpecC data types if suitable (e.g. bit vectors)
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• Specification Model Generation
– It is desirable to automatically generate a Specification Model!

• Key Concepts needed for System Modeling 
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Current Research

B0 B1

B2 B3

System Model
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Current Research

• Existing System Design Flow
– Input:    System model

– Output: MPSoC platform

• Actual Starting Point
– C reference code

– Flat, unstructured, sequential

– Insufficient for system exploration

• Need: System Model
– System-Level Description Language (SLDL)

– Well-structured
• Explicit computation, explicit communication

• Potential parallelism explicitly exposed

– Analyzable, synthesizable, verifiable

• Research: Automatic Re-Coding
– How to get from flat and sequential C code

to a flexible and parallel system model?

V1

func2()

func3()

V2 V3

func1()

C Code

B0 B1

B2 B3

System Model

M

M

P1 P2

IPIP

MPSoC Platform

M

Re-Coding
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Recoding: Motivation

• Extend of Automation
– Refinement-based design flow
• Automatic

• Specification model down to 
implementation

• Example: SCE (mostly automatic)
• MP3 decoder: less than 1 week

• Manual
• C reference code to

SpecC specification model
• Source code transformations
• MP3 decoder: 12-14 weeks!

• Automation Gap
– 90% of overall design time

is spent on re-coding!

• Research: Automatic Recoding

Automation GapManual 12-14 weeks

Less than
1 week

Automatic

C Reference Code

Specification Model

Architecture Model

Architecture Exploration

...

Communication Model

Comm. Exploration

Implementation

Source: System Design: A Practical Guide with SpecC

Recoding
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Recoding: Problem Definition

• How to get from flat, sequential C code
to a flexible, parallel system model?

• Recoding 
– Create structural hierarchy

– Partition code and data
• Expose concurrency (parallelize/pipeline)

– Expose communication

– Eliminate pointers

– Make the code compliant
to the design tools, …

• Current Research
– Computer-Aided Recoding

• Automated source code transformations

System Model

B0 B1

B2 B3

C1

C4

C2

C3

C
5

C
6

C code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

Recoding
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Recoding: Overcoming the Specification Gap

Specification 
Model

B0 B1

B2 B3

C1

C4

C2

C3

C
5

C
6

C Reference 
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

GAP

Recoding

• Source-to-Source Transformations
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Recoding: Overcoming the Specification Gap

• Step-wise Source-to-Source Transformations
– Creating structural hierarchy [ASPDAC’08]
– Code and data partitioning [DAC’07]
– Creating explicit communication [ASPDAC’07]
– Recode pointers [ISSS/CODES’07]

C Reference 
Model

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

Flexible
System Model
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C
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Expose Communication

…

Recode Pointers

Partitioned
Model
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Partition Code
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Recoding: Creating Structural Hierarchy

• Goals
– Separation of computation and communication
– Explicit structure
– Static connectivity (to enable/simplify analysis!)

• Modeling Hierarchy
– Component blocks

• Ports, data direction
– Component instantiation

• Port map, connectivity

• Describing Hierarchy
– C code

• Global scope
• Local scope

– SLDLs
• Global scope
• Local scope
• Class scope

Syntactical hierarchy
in C code

Local variables

Global Variables
Global Functions

Parameters

Syntactical hierarchy
in SLDL code

Global Variables

Global Functions

Local variables
Parameters

Classes
Ports
Member variables
Instances
Methods

Local variables
Parameters
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• Approach
– Convert functional hierarchy into structural hierarchy
– Step-wise model transformation
– Hierarchical encapsulation

• Utilize given function call tree
• Convert each function into a behavior
• Start with root (i.e. main() function)
• Continue step by step down to leafs

Recoding: Creating Structural Hierarchy

Functional Hierarchy Structural Hierarchy

f2()

f1()

f4()f3()

Model 0

B_f1

f2()

f4()f3()

Model 1

B_f1

B_f2

f3()

f4()

Model 2

B_f1

B_f2

B_f3

B_f4

Model 3
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Recoding: Exposing Potential Parallelism

• Desirable model features
– Enable parallel execution
– Allow mapping

to different PEs

• Recoding tasks
– Partition code
– Partition data
– Synchronize dependents

• Recoding transformations
1. Loop splitting
2. Cumulative Access Type analysis
3. Partitioning of vector dependents
4. Synchronizing dependent variables
 [DAC’07, TCAD’08]

Code

Data

Code partitioning

Data partitioning

Synchronize

Data

Code Code Code

Code Code Code

Code Code Code
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Recoding: Exposing Communication

Option-1 Option-2 Option-n…

Shared-Memory Model

B0 B1

B2 B3

V1 V2 V3

Explicit Communication Model

B0 B1

B2 B3

C1

C4

C2

C3

C
5

C
6

PE0

Memory

Architecture-1

Only Option

PE1

PE2 PE3

PE0

Architecture-2

PE1

PE2 PE3

• Shared-Memory Model 
– Global variables limit the 

number of possible 
automatic explorations

• Explicit Communication 
Model

– Enables automatic 
exploration of more design 
alternatives

• Quality of Communication Exploration 
– Number of explorations

– Extent of automation

– Time 

• Why create explicit communication?
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Recoding: Exposing Communication (1)

• Localize global variables to 
partitions
– To enable multiple explorations

• Procedure
– Find the global variable

– Determine the functions and behaviors 
accessing it

– If only one behavior is accessing it,
migrate the variable into this behavior

Implicit 
Dependency

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Localize 
R1, R2

Behavioral 
Model
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Recoding: Exposing Communication (2)

Data Flow/ Explicit 
connectuivity

Implicit 
Dependency

Read port Write port

• Localize global variables to 
common parent and provide 
explicit access
– Simplifies subsequent analysis

of models

• Procedure
– Find the global variable

– Determine the functions and behaviors 
accessing it

– If multiple behaviors are accessing it,
find the lowest common parent

– Migrate the variable to the parent

– Provide access to the variable by 
recursively inserting ports in behaviors

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Localize 
R1, R2

Make explicit data 
connections RW1, 

RW2

Behavioral 
Model

RW2
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Block -2Block -1

R1 R2RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Block -2Block -1

R1 R2

RW1

Explicit connectivity

Localize 
R1, R2

Make explicit data 
connections RW1, 

RW2

Block -2Block -1

R1 R2

C1 C2

Establish 
Synchronization

RW1, RW2

Recoding: Exposing Communication (3)

Behavioral 
Model

Read port

Write port

Implicit 
Dependency

• Use message passing channels 
instead of variables
– Defines synchronization scheme

– Guides exploration tools

• Procedure
– Create a typed synchronization channel

– Replace the ports
corresponding to the original variable 
with the channel interface type

– Modify each access to the variable
to call the appropriate interface function 
of the channel

• read() / receive()

• write() / send()

RW2
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Project Discussion

• Digital Camera Example
– Component Model

SoC

Jpeg
Encoder

CCD
Control

File
I/O

pixel bytes

Flash
Memory

CCD
Sensor

JpegEncoder

Read DCT Quant Huff
8x8

block
8x8

block
8x8

block
Pixel bytes
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When exposed to light, each 
cell becomes electrically 
charged. This charge can 
then be converted to a 8-bit 
value where 0 represents no 
exposure while 255 
represents very intense 
exposure of that cell to light.

Some of the columns are 
covered with a black strip of 
paint. The light-intensity of 
these pixels is used for zero-
bias adjustments of all the 
cells.

The electromechanical 
shutter is activated to expose 
the cells to light for a brief 
moment.

The electronic circuitry, when 
commanded, discharges the 
cells, activates the 
electromechanical shutter, 
and then reads the 8-bit 
charge value of each cell. 
These values can be clocked 
out of the CCD by external 
logic through a standard 
parallel bus interface.

Lens area

Pixel columns

Covered columns

Electronic 
circuitry

Electro-
mechanical 

shutter

P
ix

e
l r

ow
s

Project Discussion

• Digital Camera Example
– Charge-Coupled Device (CCD)

• Special sensor that captures an image

• Light-sensitive silicon solid-state device composed of many cells

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Image Compression

– JPEG (Joint Photographic Experts Group)
• Popular standard format for representing digital images 

in a compressed form

• Provides for a number of different modes of operation

• Mode used in this chapter provides high compression 
ratios using DCT (discrete cosine transform)

• Image data divided into blocks of 8 x 8 pixels

• 3 steps performed on each block
– DCT

– Quantization

– Huffman encoding

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Discrete Cosine Transform (DCT)

– Transforms original 8 x 8 block into a cosine-frequency domain
• Upper-left corner values represent low frequency components

– Essence of image

• Lower-right corner values represent finer details
– Can reduce precision of these values and retain reasonable image quality

– FDCT (Forward DCT) formula
• C(h) = if (h == 0) then 1/sqrt(2) else 1.0

– Auxiliary function used in main function F(u,v)

• F(u,v) = ¼ × C(u) × C(v) Σx=0..7 Σy=0..7 Dxy × cos(π(2u + 1)u/16) × cos(π(2y + 1)v/16)
– Gives encoded pixel at row u, column v

– Dxy is original pixel value at row x, column y

– IDCT (Inverse DCT)
• Reverses process to obtain original block

(not needed for this design)

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Quantization

– Achieve high compression ratio by reducing image quality
• Reduce bit precision of encoded data

– Fewer bits needed for encoding

– One way is to divide all values by a factor of 2

» Simple right shifts can do this

• Dequantization would reverse process for decompression

1150 39 -43 -10 26 -83 11 41
-81 -3 115 -73 -6 -2 22 -5
14 -11 1 -42 26 -3 17 -38
2 -61 -13 -12 36 -23 -18 5

44 13 37 -4 10 -21 7 -8
36 -11 -9 -4 20 -28 -21 14

-19 -7 21 -6 3 3 12 -21
-5 -13 -11 -17 -4 -1 7 -4

144 5 -5 -1 3 -10 1 5
-10 0 14 -9 -1 0 3 -1

2 -1 0 -5 3 0 2 -5
0 -8 -2 -2 5 -3 -2 1
6 2 5 -1 1 -3 1 -1
5 -1 -1 -1 3 -4 -3 2

-2 -1 3 -1 0 0 2 -3
-1 -2 -1 -2 -1 0 1 -1

After DCT After quantization

Divide each cell’s 
value  by 8

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Huffman Encoding

– Serialize 8 x 8 block of pixels
• Values are converted into single list using zigzag pattern

– Perform Huffman encoding
• More frequently occurring pixels assigned short binary code

• Longer binary codes left for less frequently occurring pixels

– Each pixel in serial list converted to Huffman encoded values
• Much shorter list, thus compression

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Huffman Encoding (2)

144

5 3 2

1 0 -2

-1

-10 -5 -3

-4 -8 -9614

1 1

2

1 1

2

1

2
2

4

3

5

4

6
5

9

5

10

5

11

5

14

6

17

8

18
15

29

35

64

1

-1 15x 
0 8x
-2 6x
1 5x
2 5x
3 5x
5 5x
-3 4x
-5 3x

-10 2x
144 1x
-9 1x
-8 1x
-4 1x
6 1x

14 1x

-1 00

0 100

-2 110

1 010

2 1110

3 1010

5 0110

-3 11110

-5 10110

-10 01110

144 111111

-9 111110

-8 101111

-4 101110

6 011111

14 011110

Pixel 
frequency

Huffman tree
Huffman 
codes

• Pixel frequencies on left
– Pixel value –1 occurs 15 times
– Pixel value 14 occurs 1 time

• Build Huffman tree from bottom up
– Create one leaf node for each pixel

and assign frequency as node’s value
– Create an internal node by joining

any two nodes whose sum is
a minimal value

• This sum is internal nodes value

– Repeat until complete binary tree

• Traverse tree from root to leaf
to obtain binary code for leaf’s pixel value

– Append 0 for left traversal, 1 for right traversal

• Huffman encoding is reversible
– No code is a prefix of another code

Source: T. Givargis, F. Vahid. “Embedded System Design”, Wiley 2002.
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Project Discussion

• Digital Camera Example
– Component Model

– Homework Assigment 2
• Become familiar with JPEG Encoder Application

–Study reference code: 
/home/doemer/EECS222A_F09/jpegencoder.tar.gz

–Draw block diagram of files, functions, and key communication variables
–Simplify code for a 116×96 pixel CCD (eliminate malloc calls!)

SoC

Jpeg
Encoder

CCD
Control

File
I/O

pixel bytes

Flash
Memory

CCD
Sensor

JpegEncoder

Read DCT Quant Huff8x8
bloc

k

8x8
block

8x8
blockPixel bytes
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Homework Assignment 3

• Task
– Convert JPEG Encoder Application

to a proper SpecC Specification Model

• Deliverables
– Email to doemer@uci.edu with subject

“EECS222A Assignment 3”
• Brief status description (in body of your email)
• Source code jpegencoder.tar.gz (attachment)

• Due
– Next week: October 30, 2009, 12pm (noon)

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff
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Homework Assignment 3

• Hint:
– Use the sir_tree tool to validate your hierarchy

– The final model should look like this:

doemer@epsilon.eecs.uci.edu:3 > sir_tree -blt digicam.sir
B i o   behavior Main
B i o   |------ JpegEncoder jpeg
B i s   |       |------ Dct dct
B i l   |       |       |------ Bound bound
B i l   |       |       |------ ChenDct chendct
B i l   |       |       \------ Preshift preshift
B i s   |       |------ Huff huff
B i l   |       |       |------ Huffencode huffencode
B i l   |       |       \------ Zigzag zigzag
B i l   |       |------ Quantize quantize
B i l   |       \------ ReadBlock readblock
B i l   |------ Monitor monitor
B i l   |------ Stimulus stimulus
C i l   |------ c_queue data
C i l   \------ c_handshake start


