
EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 1

EECS 222A:
System-on-Chip Description and Modeling

Lecture 9

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 2

Lecture 9: Overview

• Project Discussion: Digital Camera
– Assignment 2: JPEG Application Structure

– Assignment 3: Sequential SpecC Model

– Assignment 4: Sequential SpecC Model in SCE

– Assignment 5: Parallel SpecC Model for Synthesis

– Assignment 6: Design Space Exploration

– Discussion, Q&A

• Modeling with SystemC SLDL
– SystemC 2.0 Tutorial

• Presentation by Thorsten Groetker, Synopsys

– Assignment 1: Sender/Receiver Example in SpecC

– Assignment 7: Sender/Receiver Example in SystemC



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 2

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 3

Project Discussion: Assignment 2

• Digital Camera Example
– Component Model

– Homework Assigment 2
• Become familiar with JPEG Encoder Application

–Study reference code: 
/home/doemer/EECS222A_F09/jpegencoder.tar.gz

–Draw block diagram of files, functions, and key communication variables
–Simplify code for a 116×96 pixel CCD (eliminate malloc calls!)

SoC

Jpeg
Encoder

CCD
Control

File
I/O

pixel bytes

Flash
Memory

CCD
Sensor

JpegEncoder

Read DCT Quant Huff8x8
bloc
k

8x8
block

8x8
blockPixel bytes

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 4

Project Discussion: Assignment 3

• Task
– Convert JPEG Encoder Application

to a proper SpecC Specification Model

• Deliverables
– Email to doemer@uci.edu with subject

“EECS222A Assignment 3”
• Brief status description (in body of your email)
• Source code jpegencoder.tar.gz (attachment)

• Due
– Next week: October 30, 2009, 12pm (noon)

JpegEncoder Monitor

FileWrite()

Stimulus

ReadBmp()

Main

Quant

Read

S
ca

nB
uf

fe
r

Dct

Huff



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 3

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 5

Project Discussion: Assignment 3

• Hint:
– Use the sir_tree tool to validate your hierarchy

– The final model should look like this:

doemer@epsilon.eecs.uci.edu:3 > sir_tree -blt digicam.sir
B i o   behavior Main
B i o   |------ JpegEncoder jpeg
B i s   |       |------ Dct dct
B i l   |       |       |------ Bound bound
B i l   |       |       |------ ChenDct chendct
B i l   |       |       \------ Preshift preshift
B i s   |       |------ Huff huff
B i l   |       |       |------ Huffencode huffencode
B i l   |       |       \------ Zigzag zigzag
B i l   |       |------ Quantize quantize
B i l   |       \------ ReadBlock readblock
B i l   |------ Monitor monitor
B i l   |------ Stimulus stimulus
C i l   |------ c_queue data
C i l   \------ c_handshake start

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 6

Project Discussion: Assignment 4

3. Analyze your digital camera model in SCE
– Setup

• …continued from step 2 (previous page)

– View the structural hierachy chart
• Select the Main behavior in the behavior browser
• Right-click ->Chart
• Double-click the chart to add further levels of hierarchy
• Turn on connectivity View->Connectivity
• Window->Print… to file “digicam.ps”
• In your shell window, convert the PostScript file to PDF:

ps2pdf digicam.ps
• Check the PDF file: acroread digicam.pdf

• Deliverables
– Hierarchy chart

• “digicam.pdf”

• Due
– by Friday, Nov 6, 2009, at noon
– by email to doemer@uci.edu with subject “EECS222C HW4”



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 4

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 7

Project Discussion: Assignment 4

• Sequential Digicam Model
– Screen shot of Hierarchy Chart in SCE

– (rotated by 90 degrees)

– jpegencoder2.tar.gz

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 8

Project Discussion: Assignment 5

• Create a parallel/pipelined and synthesizable Digicam model
– Start from previous model

• /home/doemer/EECS222A_F09/jpegencoder2.tar.gz
– Insert timing checks into the test bench
– Add explicit I/O units
– Parallelize/pipeline the JpegEncoder block

• Modify Dct, Quantize and Huffman
to infinitely work on continuous streams of data
over typed queue channels

– Validate functionality
– Print hierarchy chart with connectivity

• Deliverables
– Status description
– Source code “digicam.tar.gz”
– Hierarchy chart “digicam.pdf”

• Due
– by Friday, Nov 13, 2009, at noon
– by email to doemer@uci.edu with subject “EECS222C HW5”



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 5

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 9

Project Discussion: Assignment 5

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 10

Project Discussion: Assignment 5

• Pipelined
Digicam
Model

• Explicit I/O Units

• Explicit Pipelining

• Communication
via Queues

• jpegencoder3
.tar.gz



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 6

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 11

Project Discussion: Assignment 6

• Design Space Exploration using SCE
1. Profile, analyze, estimate the digicam model 

(jpegencoder3.tar.gz)
• For a single ARM_7TDMI CPU at 100MHz
• For metric of “Computation”
• For blocks read, dct, quant, huff, write
• Create a bar chart of the Computation Profile

– “ARM100.pdf”

2. Create a software-only reference model
• Allocate and Map

– 1 ARM7TDMI CPU at 100MHz as “ARM100” for JpegEncoder
– 1 Custom HW_Standard block at 100Mhz as “InputUnit” for ReadBlock
– 1 Custom HW_Standard block at 100Mhz as “OutputUnit” for WriteBlock

• Estimate the allocation (Validation->Evaluate)
• Perform Architecture Refinement
• Perform Scheduling Refinement

– Use Round-Robin scheduling policy on ARM100
• When executed, the resulting model should encode our test picture

in 39.252ms

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 12

Project Discussion: Assignment 6

• Design Space Exploration
3. Architecture Exploration

• Explore various other system architectures
– Use up to 5 ARM_7TDMI processors

» Clock frequency may be 100, 150, or 200MHz
» Cost is assumed at $100, $150, $200, respectively
» Use only 50MHz AMBA AHB bus

– Use up to 5 HW_Standard accellerator blocks
» Clock frequency may be 100, 200, 300, or 400MHz
» Cost is assumed at $200, $400, $600, $800, respectively

– Vary the mapping of blocks in the DUT to CPUs and HW units
– Vary the scheduling policy as needed

• Example:
– Use 1 HW100 for DCT
– Use 1 ARM100 for everything else



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 7

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 13

Project Discussion: Assignment 6

• Design Space Exploration
4. Scheduling Exploration

• Explore various scheduling strategies for each selected CPU

• Choose from
– Static scheduling

» with varying execution order

– Round-Robin scheduling

– Priority-based scheduling

» with varying priorities

• Example:
– ARM100 scheduled with round-robin

– ARM200 scheduled with priority-based scheduling

– Static scheduling on HW blocks

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 14

Project Discussion: Assignment 6

• Design Space Exploration
5. Deliverables

• Bar chart of the software-only computation profile
– “ARM100.pdf”

• Text file with table of 3 “good” architectures
– List the allocation and mapping for each block
– Simulate to estimate the resulting encoding delay
– Calculate the assumed cost of the architecture

• Due
– by Friday, Nov 20, 2009, 2pm
– by email to doemer@uci.edu

with subject “EECS222A HW6”
– bring a copy for discussion in class!



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 8

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 15

Project Discussion: Assignment 6

• Bar chart of the software-only computation profile
– single ARM_7TDMI CPU at 100MHz
– metric of “Computation”
– “ARM100.pdf”

• Read: 3.9ms
• Dct: 20.1ms
• Quant: 7.8ms
• Huff: 10.8ms
• Write: 0.1ms
• Design: 42.7ms

– With assignment of dedicated I/O units,
encoding time in simulation is 39.252ms

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 16

Project Discussion: Assignment 6

• Design Space Exploration: Discussion in Class
– Cost / performance trade-off graph

• Visualize design space for “good” architectures

– Issues:
• ARM7TDMI frequency range patched

• HW-only solution!?
– One single HW PE

– Multiple HW PEs

• Scheduling policies
– Round-robin vs. Priority-based Scheduling

» Both non-preemptive!

– Static scheduling

» Not applicable for multiple behaviors with infinite loops



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 9

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 17

SystemC 2.0 Tutorial

• Presentation by Thorsten Groetker,
Synopsys, 2001
– Motivation

– Models of Computation

– Model of Time

– Communication, Interfaces and Channels

– Platform Modeling

– Transaction-level Model, Examples

– Benefits

– Summary

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 18

Assignment 1: Sender/Receiver in SpecC

• Task: Introduction to SpecC Compiler and Simulator
– Become familiar with scc

• See man scc for manual page
– Use scc to compile and simulate the examples in

• /opt/sce-20080601/examples/simple/
– Build and simulate the sender/receiver example

• See Slide 25! (behavior B should be Main)
• Sender S should send values 0.0, 0.5, … 5.0

to the receiver R which prints them to the screen

• Deliverables
– Source file: SendReceive.sc
– Simulation log: SendReceive.log

• Due
– By next week: October 9, 2009, 12pm (noon)
– Email to doemer@uci.edu with subject

“EECS222A Assignment 1”



EECS222A: SoC Description and 
Modeling

Lecture 9

(c) 2009 R. Doemer 10

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 19

Assignment 1: Sender/Receiver in SpecC

• Add behavior Main

• Add loop to S

• Add loop to R

• Compile and Simulate

• Done!

behavior S(IS Port)
{
float X;
void main(void)
{ ...
Port.Send(X);
...

}
};

behavior R(IR Port)
{
float Y;
void main(void)
{...
Y=Port.Receive();
...

}
};

channel C
implements IS, IR

{
event Req;
float Data;
event Ack;

void Send(float X)
{ Data = X;
notify Req;
wait Ack;

}
float Receive(void)
{ float Y;
wait Req;
Y = Data;
notify Ack;
return Y;

}
};

interface IS
{
void Send(float);

};
interface IR
{
float Receive(void);

};

S R

Ack

Data

Req

Main

C

IS IR

EECS222A: SoC Description and Modeling, Lecture 9 (c) 2009 R. Doemer 20

Assignment 7: Sender/Receiver in SystemC

• Goal: Introduction to SystemC
– Review the producer/consumer example by Stuart Swan

• See Lecture8_SystemC_Intro.pdf

– Compile and simulate the example using SystemC
• mkdir SystemC ; cd SystemC
• cp /opt/pkg/systemc-2.1.v1/examples/systemc/simple_fifo.cpp .
• g++ simple_fifo.cpp -I/opt/pkg/systemc-2.1.v1/include

-L/opt/pkg/systemc-2.1.v1/lib-linux –lsystemc
-o simple_fifo

• ./simple_fifo

– Model and simulate the sender/receiver example
from Assignment 1 in SystemC

• Reference: /home/doemer/EECS222A_F09/SendReceive.sc

• Deliverables
– Source file: SendReceive.cpp
– Simulation log: SendReceive.log

• Due
– In two weeks: December 4, 2010, 12pm (noon)
– Email to doemer@uci.edu with subject

“EECS222A Assignment 7”


