
EECS 211 
Advanced System Software 

Winter 2009 
 

Assignment 4 
 
Posted: February 4, 2009 
Due: February 18, 2009 
 
Topic: Priority scheduling in Nachos 
 
Instructions: 
 
The goal of this assignment is to develop, implement and test task scheduling in 
the Nachos system. This assignment continues the previous assignments based 
on the “Nachos Assignment 1” described in the file doc/thread.ps of the 
Nachos installation. Again, the instructions below assume that you read 
doc/thread.ps in parallel. 
 
 
Task 1: Implement a priority-based scheduler 
 
See item 8 in doc/thread.ps. 
Again, we will work in the threads directory. As you have noticed in the 
previous assignments, the original Nachos scheduler implements a straight-
forward first-come-first-served (FCFS) scheduling policy. We will change that 
now into a priority-based policy. That is, with each thread, we will associate a 
priority between 0 and 9, 0 being the highest priority (first choice). 
 
Follow the instructions to item 8 in doc/thread.ps to implement the priority 
scheduler. You will need to modify the Nachos source code only in the files 
thread.cc, thread.h, and scheduler.cc. 
 
Hint: There is not much new code to write! 
 
 
Deliverable 1: (10 points) 
 
Submit the extended source files thread.cc, thread.h, and scheduler.cc 
as email attachments. In your email, briefly explain your implementation. 



Task 2: Implement a bounded buffer for safe inter-thread communication 
 
See item 2 in doc/threads.ps. For safe synchronization in the buffer, use the 
locks and condition variables from Assignment 2 and 3, not semaphores. Note 
that the bounded buffer described in chapter 6.6.1 in the textbook is implemented 
using semaphores, so that is not a solution to this assignment. 
 
The bounded buffer should be implemented as a new class Buffer (for 
simplicity, we define the class and its methods at the beginning of the file 
threadtest.cc). The buffer size (maximum queue length) should be set at the 
time of instantiation (as a parameter to the constructor). The class Buffer 
should provide two public methods named Load and Store which take a single 
character (type char) out of the buffer, or place a character into the buffer, 
respectively (for details, see the provided template file threadtest.cc). 
 
Make sure to properly synchronize the Load and Store methods (using locks 
and/or condition variables only!). The used locks and/or condition variables 
should be instantiated as members inside the Buffer class, and should be 
properly called by the necessary methods so that the user of the buffer does not 
need to worry about any synchronization. 
 
Test your buffer implementation using a producer-consumer example. In the 
provided template file threadtest.cc, 2 producer and 2 consumer threads are 
instantiated which communicate via one shared instance of the bounded buffer. 
Note that the priority of the threads is provided as argument to the Fork() 
method call. The first producer and the first consumer get the (high) priority 1, 
whereas the second producer and the second consumer get the (low) priority 2. 
 
Hint: Don’t modify anything but the Buffer class and its implementation. There 
is no need to change any code for the consumer and producer threads. 
Again, there is not much new code to write. 
 
 
Deliverable 2: (20 points) 
 
Submit the extended source file threadtest.cc. Also provide a brief 
description of your synchronization along with a script of the successfully running 
program. Briefly explain what happens and why. 
 



Submission instructions: 
 
To submit your homework, send an email with subject “EECS211 HW4” to the 
course instructor at doemer@uci.edu. Please put your text in the body of the 
email and supply the source files as attachments. 
 
To ensure proper credit, be sure to send your email before the deadline: 
February 18, 2009, 12pm (noon). 
 
-- 
Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu) 
 

mailto:doemer@uci.edu
mailto:doemer@uci.edu

