
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 11: File System
Implementation

11.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 11: File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

 Example: WAFL File System

(slides selected/reordered/fixed by R. Doemer, 02/19/09)

2

11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Linked free space list on disk

(slide updated by R. Doemer, 02/19/09)

11.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management (Cont.)

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

 Need to protect:

 Pointer to free list

 Extensions

 Grouping

Multiple block pointers in one block

 Counting

 List of blocks, each block represents n contiguous blocks

 Alternatives

 Store “free file” in FAT or indexed allocation scheme

 Bitmap scheme (next page)

(slide fixed by R. Doemer, 02/19/09)

3

11.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =

 0 block[i] free

1 block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

11.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 212 bytes (4kB)

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (32 megabyte)

 Easy to get contiguous files

 Bit map must be kept on disk

 Copy in memory and disk may differ

 Cannot allow for block[i] to have a situation where
bit[i] = 1 in memory and bit[i] = 0 on disk

 Solution:

 Set bit[i] = 1 in disk

 Allocate block[i]

 Set bit[i] = 1 in memory

(slide combined/updated by R. Doemer, 02/19/09)

4

11.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used
blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual
disk, or RAM disk

11.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Recovery

 Consistency checking – compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

 Use system programs to back up data from disk to another storage device
(floppy disk, magnetic tape, other magnetic disk, optical)

 Recover lost file or disk by restoring data from backup

5

11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Log Structured File Systems

 Log structured (or journaling) file systems record each update to
the file system as a transaction

 All transactions are written to a log

 A transaction is considered committed once it is written to the
log

 However, the file system may not yet be updated

 The transactions in the log are asynchronously written to the file
system

 When the file system is modified, the transaction is removed
from the log

 If the file system crashes, all remaining transactions in the log must
still be performed

11.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Sun Network File System (NFS)

 An implementation and a specification of a software file system
for accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS operating systems
running on Sun workstations

 using an unreliable datagram protocol (UDP/IP protocol,
e.g. over Ethernet)

 NFS is designed to operate in a heterogeneous environment of different
machines, operating systems, and network architectures

 NFS specification is independent of these media

 Independence is achieved through the use of
remote procedure call (RPC) primitives
used between two implementation-independent file system interfaces

(slides combined/simplified by R. Doemer, 02/19/09)

6

11.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of NFS Architecture

11.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Architecture Layers

 UNIX file-system interface

 based on open, read, write, and close calls,

 and file descriptors

 Virtual File System (VFS) layer

 Activates file-system-specific operations to handle requests
according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer

 Bottom layer of the architecture

 Implements the NFS protocol

(slides combined/simplified by R. Doemer, 02/19/09)

7

11.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS (Cont.)

 Interconnected workstations are viewed as a set of independent machines
with independent file systems

 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral sub-tree of the local file
system

 Unless empty, it replaces the subtree descending from the local
directory

 Specification of the remote directory for the mount operation is
nontransparent

 Host and full name of the remote directory have to be provided

 Files in the remote directory can then be accessed in a transparent
manner

(slides combined/simplified by R. Doemer, 02/19/09)

11.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NSF Mounting

Local file system Remote file system Mounted as NFS

(slides combined/simplified by R. Doemer, 02/19/09)

8

11.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Mount Protocol

 The NFS specification distinguishes between the services provided by
a mount mechanism and the actual remote-file-access services

 NFS mount protocol establishes an initial logical connection
between server and client

 Mount operation includes name of remote directory to be mounted
and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

 Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

 Following a mount request that conforms to its export list, the server
returns a file handle — a key for further accesses

 The mount operation changes only the user’s view and does not affect
the server side

(slides combined/simplified by R. Doemer, 02/19/09)

11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Protocol

 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless;
each request has to provide a full set of arguments

 Modified data must be committed to the server’s disk
before results are returned to the client

 The NFS protocol does not provide concurrency-control mechanisms

(slides combined/simplified by R. Doemer, 02/19/09)

9

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 11

