
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 11: File System
Implementation

11.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 11: File System Implementation

 File-System Structure

 File-System Implementation

 Directory Implementation

 Allocation Methods

 Free-Space Management

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

 Example: WAFL File System

(slides selected/reordered/fixed by R. Doemer, 02/19/09)

2

11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Linked free space list on disk

(slide updated by R. Doemer, 02/19/09)

11.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management (Cont.)

 Linked list (free list)

 Cannot get contiguous space easily

 No waste of space

 Need to protect:

 Pointer to free list

 Extensions

 Grouping

Multiple block pointers in one block

 Counting

 List of blocks, each block represents n contiguous blocks

 Alternatives

 Store “free file” in FAT or indexed allocation scheme

 Bitmap scheme (next page)

(slide fixed by R. Doemer, 02/19/09)

3

11.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =



 0  block[i] free

1  block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

11.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management (Cont.)

 Bit map requires extra space

 Example:

block size = 212 bytes (4kB)

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (32 megabyte)

 Easy to get contiguous files

 Bit map must be kept on disk

 Copy in memory and disk may differ

 Cannot allow for block[i] to have a situation where
bit[i] = 1 in memory and bit[i] = 0 on disk

 Solution:

 Set bit[i] = 1 in disk

 Allocate block[i]

 Set bit[i] = 1 in memory

(slide combined/updated by R. Doemer, 02/19/09)

4

11.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Efficiency and Performance

 Efficiency dependent on:

 disk allocation and directory algorithms

 types of data kept in file’s directory entry

 Performance

 disk cache – separate section of main memory for frequently used
blocks

 free-behind and read-ahead – techniques to optimize sequential access

 improve PC performance by dedicating section of memory as virtual
disk, or RAM disk

11.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Recovery

 Consistency checking – compares data in directory structure with data
blocks on disk, and tries to fix inconsistencies

 Use system programs to back up data from disk to another storage device
(floppy disk, magnetic tape, other magnetic disk, optical)

 Recover lost file or disk by restoring data from backup

5

11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Log Structured File Systems

 Log structured (or journaling) file systems record each update to
the file system as a transaction

 All transactions are written to a log

 A transaction is considered committed once it is written to the
log

 However, the file system may not yet be updated

 The transactions in the log are asynchronously written to the file
system

 When the file system is modified, the transaction is removed
from the log

 If the file system crashes, all remaining transactions in the log must
still be performed

11.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Sun Network File System (NFS)

 An implementation and a specification of a software file system
for accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS operating systems
running on Sun workstations

 using an unreliable datagram protocol (UDP/IP protocol,
e.g. over Ethernet)

 NFS is designed to operate in a heterogeneous environment of different
machines, operating systems, and network architectures

 NFS specification is independent of these media

 Independence is achieved through the use of
remote procedure call (RPC) primitives
used between two implementation-independent file system interfaces

(slides combined/simplified by R. Doemer, 02/19/09)

6

11.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of NFS Architecture

11.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Architecture Layers

 UNIX file-system interface

 based on open, read, write, and close calls,

 and file descriptors

 Virtual File System (VFS) layer

 Activates file-system-specific operations to handle requests
according to their file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer

 Bottom layer of the architecture

 Implements the NFS protocol

(slides combined/simplified by R. Doemer, 02/19/09)

7

11.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS (Cont.)

 Interconnected workstations are viewed as a set of independent machines
with independent file systems

 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral sub-tree of the local file
system

 Unless empty, it replaces the subtree descending from the local
directory

 Specification of the remote directory for the mount operation is
nontransparent

 Host and full name of the remote directory have to be provided

 Files in the remote directory can then be accessed in a transparent
manner

(slides combined/simplified by R. Doemer, 02/19/09)

11.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NSF Mounting

Local file system Remote file system Mounted as NFS

(slides combined/simplified by R. Doemer, 02/19/09)

8

11.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Mount Protocol

 The NFS specification distinguishes between the services provided by
a mount mechanism and the actual remote-file-access services

 NFS mount protocol establishes an initial logical connection
between server and client

 Mount operation includes name of remote directory to be mounted
and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded to
mount server running on server machine

 Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them

 Following a mount request that conforms to its export list, the server
returns a file handle — a key for further accesses

 The mount operation changes only the user’s view and does not affect
the server side

(slides combined/simplified by R. Doemer, 02/19/09)

11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Protocol

 Provides a set of remote procedure calls for remote file operations.
The procedures support the following operations:

 searching for a file within a directory

 reading a set of directory entries

 manipulating links and directories

 accessing file attributes

 reading and writing files

 NFS servers are stateless;
each request has to provide a full set of arguments

 Modified data must be committed to the server’s disk
before results are returned to the client

 The NFS protocol does not provide concurrency-control mechanisms

(slides combined/simplified by R. Doemer, 02/19/09)

9

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 11

