Chapter 3: Processes
| |

(slides selected/reordered by R. Doemer, 01/07/09)

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

r & Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication

Operating System Concepts — 8 Edition 3.2 Silberschatz, Galvin and Gagne ©2009

r.d Process Concept

® An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks
Textbook uses the terms job and process almost interchangeably

m Process — a program in execution; process execution must
progress in sequential fashion

m A process includes:
e program counter
e stack
e data section

Operating System Concepts — 8 Edition 3.3 Silberschatz, Galvin and Gagne ©2009

r.d] Process in Memory

max
stack

heap

data

text

Operating System Concepts — 8 Edition 3.4 Silberschatz, Galvin and Gagne ©2009

™

(em]
¥ d] Process State

B As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution

Operating System Concepts — 8 Edition 3.5 Silberschatz, Galvin and Gagne ©2009

admitted

interrupt exit terminated

scheduler dispatch

/O or event completion I/O or event wait

Operating System Concepts — 8 Edition 3.6 Silberschatz, Galvin and Gagne ©2009

™

“$*” Process Control Block (PCB)

Information associated with each process
® Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

1/0 status information

I T

Operating System Concepts — 8 Edition 3.7 Silberschatz, Galvin and Gagne ©2009

™,

“$*/ Process Control Block (PCB)

process state
process number

program counter

registers

memory limits

list of open files

N

Operating System Concepts — 8 Edition 3.8 Silberschatz, Galvin and Gagne ©2009

w—- Context Switch

® When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while
switching

® Time dependent on hardware support

Operating System Concepts — 8 Edition 3.9 Silberschatz, Galvin and Gagne ©2009

o

“%”/ CPU Switch From Process to Process

process P, operating system process P,
interrupt or system call
executing ”

B save state into PCB,

0
.
.

reload state from PCB, |}

ridle interrupt or system call executing

v
save slate into PCB,

- idle

J reload state from PCB,
executing][\

idle

Operating System Concepts — 8 Edition 3.10 Silberschatz, Galvin and Gagne ©2009

™.

“%”/ Process Scheduling Queues

Job queue — set of all processes in the system

m Ready queue — set of all processes residing in main memory,
ready and waiting to execute

Device queues — set of processes waiting for an I/O device
Processes migrate among the various queues

Operating System Concepts — 8 Edition 3.11 Silberschatz, Galvin and Gagne ©2009

P e
‘-“'ji_,"” Ready Queue And Various I/O Device Queues

queue header PCB, PCB,
ready head N =
queue tail registers registers
- -
- -

mag [head 34—
tape - =
unit 0 tail +——=

mag [head +—a

Jlepe | TR PCB, PCB,, PCB,
/ —_ [— -—
disk head 4
unit 0 tail
PCBg

terminal head —=
unit 0 tail +—

-

L]

Operating System Concepts — 8 Edition 3.12 Silberschatz, Galvin and Gagne ©2009

™

“%”’ Representation of Process Scheduling

f ready queue »{ CPU [

/O queve = I/Orequest |«
time slice .
expired
child fork a
executes child
interrupt wait for an
occurs interrupt
LD
P =%
Operating System Concepts — 8 Edition 3.13 Silberschatz, Galvin and Gagne ©2009
.
Tad J N
rd Process Creation

m Parent process create children processes, which, in turn create other
processes, forming a tree of processes

Generally, process identified and managed via a process identifier (pid)
Resource sharing
e Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources
m Execution

e Parent and children execute concurrently
e Parent waits until children terminate

Operating System Concepts — 8 Edition 3.14 Silberschatz, Galvin and Gagne ©2009

™

g Process Creation (Cont)

m Address space
e Child duplicate of parent
e Child has a program loaded into it
® UNIX examples
e fork system call creates new process

e exec system call used after a fork to replace the process’ memory
space with a new program

"
Operating System Concepts — 8 Edition 3.15 Silberschatz, Galvin and Gagne ©200§
.
STk J .
rd Process Creation
parent /f o resumes

Operating System Concepts — 8 Edition 3.16 Silberschatz, Galvin and Gagne ©2009

™

“»”/ A tree of processes on a typical Solaris

pid = 7785

Metscape I emacs
pid = 8105

k

=3
©

Silberschatz, Galvin and Gagne ©20!

] _,__J‘ . .
o Process Termination

B Process executes last statement and asks the operating system to
delete it (exit)

e Output data from child to parent (via wait)

e Process’ resources are deallocated by operating system
m Parent may terminate execution of children processes (abort)

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e If parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination

Operating System Concepts — 8 Edition 3.18 Silberschatz, Galvin and Gagne ©2009

™

7/ Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

B Reasons for cooperating processes:
e Information sharing
e Computation speedup
e Modularity
e Convenience

Cooperating processes need interprocess communication (IPC)
Two models of IPC

e Shared memory

e Message passing

—

>

= (4,

Operating System Concepts — 8 Edition 3.19 Silberschatz, Galvin and Gagne ©20

| "‘J e . .
- Communications Models
process A E process A |
shared ﬂ 1
process B E process B = ¢
2 1
kernel IE:_ kernel

(a) (b)

—

2

S ks
© e

Operating System Concepts — 8 Edition 3.20 Silberschatz, Galvin and Gagne ©20

™

& Synchronization

m Message passing may be either blocking or non-blocking
® Blocking is considered synchronous

e Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message is
available

® Non-blocking is considered asynchronous
e Non-blocking send has the sender send the message and

continue
e Non-blocking receive has the receiver receive a valid message
or null
D
P b
V'
Operating System Concepts — 8 Edition 3.21 Silberschatz, Galvin and Gagne ©2009

End of Chapter 3

ST,

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition,

