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r.d Process Concept

®  An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks
Textbook uses the terms job and process almost interchangeably

m Process — a program in execution; process execution must
progress in sequential fashion

m A process includes:
e program counter
e stack
e data section

Operating System Concepts — 8 Edition 3.3 Silberschatz, Galvin and Gagne ©2009

r.d] Process in Memory

max
stack

heap

data

text

Operating System Concepts — 8 Edition 3.4 Silberschatz, Galvin and Gagne ©2009




™

(em]
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B As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution
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“$*”  Process Control Block (PCB)

Information associated with each process
®  Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

1/0 status information
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“$*/  Process Control Block (PCB)
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w—- Context Switch

®  When CPU switches to another process, the system must save the state of
the old process and load the saved state for the new process via a context
switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no useful work while
switching

® Time dependent on hardware support
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“%”/  Process Scheduling Queues

Job queue — set of all processes in the system

m Ready queue — set of all processes residing in main memory,
ready and waiting to execute

Device queues — set of processes waiting for an I/O device
Processes migrate among the various queues
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“%”’ Representation of Process Scheduling
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rd Process Creation

m Parent process create children processes, which, in turn create other
processes, forming a tree of processes

Generally, process identified and managed via a process identifier (pid)
Resource sharing
e Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources
m Execution

e Parent and children execute concurrently
e Parent waits until children terminate
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g Process Creation (Cont)

m  Address space
e Child duplicate of parent
e Child has a program loaded into it
®  UNIX examples
e fork system call creates new process

e exec system call used after a fork to replace the process’ memory
space with a new program

"
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“»”/ A tree of processes on a typical Solaris
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o Process Termination

B Process executes last statement and asks the operating system to
delete it (exit)

e Output data from child to parent (via wait)

e Process’ resources are deallocated by operating system
m Parent may terminate execution of children processes (abort)

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e If parent is exiting

» Some operating system do not allow child to continue if its
parent terminates

All children terminated - cascading termination
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7/ Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

B Reasons for cooperating processes:
e Information sharing
e Computation speedup
e Modularity
e Convenience

Cooperating processes need interprocess communication (IPC)
Two models of IPC

e Shared memory

e Message passing
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& Synchronization

m  Message passing may be either blocking or non-blocking
®  Blocking is considered synchronous

e Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message is
available

®  Non-blocking is considered asynchronous
e Non-blocking send has the sender send the message and

continue
e Non-blocking receive has the receiver receive a valid message
or null
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