
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 6: Process
Synchronization

(slides selected/fixed by R. Doemer, 01/07/09)

6.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Module 6: Process Synchronization

 Background
 The Critical-Section Problem
 Peterson’s Solution
 Synchronization Hardware
 Semaphores
 Classic Problems of Synchronization
 Monitors
 Synchronization Examples
 Atomic Transactions

6.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Concurrent access to shared data may result in data
inconsistency

 Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers. We
can do so by having an integer count that keeps track of
the number of full buffers. Initially, count is set to 0. It is
incremented by the producer after it produces a new
buffer and is decremented by the consumer after it
consumes a buffer.

6.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer

while (true) {

/* produce an item and put in nextProduced */

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

count++;

}

6.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Consumer

while (true) {

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

count--;

/* consume the item in nextConsumed

}

6.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Race Condition

 count++ could be implemented as

register1 = count
register1 = register1 + 1
count = register1

 count-- could be implemented as

register2 = count
register2 = register2 - 1
count = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

6.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no
other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection
of the processes that will enter the critical section next cannot be
postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request is
granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

6.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization Hardware

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptable

 Either test memory word and set value

 Or swap contents of two memory words

6.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

TestAndSet Instruction

 Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

(slide fixed by R. Doemer, 01/07/09)

6.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solution using TestAndSet

 Shared boolean variable lock., initialized to false.

 Solution:

do {

while (TestAndSet (&lock))

; // do nothing

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

6.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solution to Critical-section Problem Using Locks

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

(slide fixed by R. Doemer, 01/07/09)

6.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore

 Synchronization tool that does not require busy waiting

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()
 Less complicated

 Can only be accessed via two indivisible (atomic) operations

 wait (S) {

while S <= 0

; // no-op

S--;

}

 signal (S) {

S++;

}

6.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0
and 1; can be simpler to implement

 Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

wait (mutex);

// Critical Section

signal (mutex);

// remainder section

} while (TRUE);

6.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);

. .

. .

. .

signal (S); signal (Q);

signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended

 Priority Inversion - Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

6.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Problems with Semaphores

 Correct use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

6.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 6

