
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 7: Deadlocks

(slides selected by R. Doemer, 01/07/09)

7.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Deadlock Problem

 A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

 Example

 System has 2 disk drives

 P1 and P2 each hold one disk drive and each needs another one

 Example

 semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

7.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request

 use

 release

7.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a
resource

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes

 No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task

 Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by

P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

7.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the processes in the
system

 R = {R1, R2, …, Rm}, the set consisting of all resource types in
the system

 request edge – directed edge P1  Rj

 assignment edge – directed edge Rj  Pi

A set of vertices V and a set of edges E.

7.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource-Allocation Graph (Cont.)

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of a Resource Allocation Graph

7.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Resource Allocation Graph With A Deadlock

7.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Graph With A Cycle But No Deadlock

7.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Facts

 If graph contains no cycles  no deadlock

 If graph contains a cycle 

 if only one instance per resource type, then deadlock

 if several instances per resource type, possibility of
deadlock

7.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock state

 Allow the system to enter a deadlock state and then recover

 Ignore the problem and pretend that deadlocks never occur in the
system; used by most operating systems, including UNIX

7.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources; must hold
for nonsharable resources

 Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources

 Require process to request and be allocated all its resources
before it begins execution, or allow process to request
resources only when the process has none

 Low resource utilization; starvation possible

Restrain the ways request can be made

7.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released

 Preempted resources are added to the list of resources for which
the process is waiting

 Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types, and
require that each process requests resources in an increasing order of
enumeration

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 7

