
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 8: Main Memory

(slides selected/reordered/fixed by R. Doemer, 01/26/09)

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Memory Management

 Background

 Contiguous Memory Allocation

 Swapping

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel Pentium

(slides reordered by R. Doemer, 01/26/09)

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Program must be brought (from disk) into memory and placed
within a process for it to be run

 Main memory and registers are only storage CPU can access
directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Main memory is usually divided into two partitions:

 Resident operating system, usually held in low memory
with interrupt vector

 User processes then held in high memory

 Relocation registers are used to protect user processes from
each other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each
logical address must be less than the limit register

 MMU maps logical address to physical address dynamically

(slide fixed by R. Doemer, 01/26/09)

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Support for Relocation and Limit Registers

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management

 Logical address – generated by the CPU; also referred to
as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent to
memory

 The user program deals with logical addresses; it never sees the
real physical addresses

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic relocation using a relocation register

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation (Cont)

 Multiple-partition allocation

 Hole – block of available memory; holes of various size are
scattered throughout memory

 When a process arrives, it is allocated memory from a hole
large enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fragmentation

 External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together in
one large block

 Compaction is possible only if relocation is dynamic, and is
done at execution time

 I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses
can happen at three different stages

 Compile time: If memory location known a priori, absolute
code can be generated; must recompile code if starting
location changes

 Load time: Must generate relocatable code if memory
location is not known at compile time

 Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support for
address maps (e.g., base and limit registers)

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multistep Processing of a User Program

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate
memory-resident library routine

 Stub replaces itself with the address of the routine, and
executes the routine

 Operating system needed to check if routine is in processes’
memory address

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swapping

 A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

 Backing store – fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these memory
images

 Roll out, roll in – swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority process
can be loaded and executed

 Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped

 Modified versions of swapping are found on many systems (i.e., UNIX,
Linux, and Windows)

 System maintains a ready queue of ready-to-run processes
which have memory images in main memory

(slide fixed by R. Doemer, 01/26/09)

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of Swapping

