B

Y e
“"’_*;"’ Chapter 8: Memory Management

|
]
]
m Paging
m Structure of the Page Table
® Segmentation
u
£
(slides selected/reordered by R. Doemer, 01[28/@)
Operating System Concepts — 8" Edition 8.1 Silberschatz, Galvin and Gagne ©2009
™

& Paging

m Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

m Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8,192 bytes)

®m Divide logical memory into blocks of same size called pages
Keep track of all free frames

® To run a program of size n pages, need to find n free frames
and load program

m Set up a page table to translate logical to physical addresses
Internal fragmentation

<y

= (17

=1
@

Operating System Concepts — 81" Edition 8.2 Silberschatz, Galvin and Gagne ©20

Address Translation Scheme

m Address generated by CPU is divided into:

e Page number (p) — used as an index into a page table which
contains base address of each page in physical memory

e Page offset (d) — combined with base address to define the
physical memory address that is sent to the memory unit

page number page offset

p d

m-n n

e For given logical address space 2™ and page size 2"

Operating System Concepts — 8" Edition 8.3 Silberschatz, Galvin and Gagne ©2009

N Paging Hardware

logical physical J
address address 0000 ... 0000

CPU

1111 ... 1111

physical
memory

paqe fable

Operating System Concepts — 8" Edition 8.4 Silberschatz, Galvin and Gagne ©2009

™.

“®Pdging Model of Logical and Physical Memory

frame
number
page 0 0
of1]
page 1 1 1| page 0
page 2 23| 2
3
page 3 page table 3| page2
logical 4| page 1
memory
5
6
7| page 3
physical
memory
Operating System Concepts — 8" Edition 8.5 Silberschatz, Galvin and Gagne ©200§

™.

“ofa| o
1B
2|¢
3|d
4|e 4 i
5 (0 = i
5lg JEL K
7 |h 18] |
8]I 21 8 m
9 =1 n
10 | k slz] o
111 page table p |
12| m 12
13| n
14| 0
15| p
logical memory 16
20 |pa
b
c
d
24 | @
f
28

physical memory
32-byte memory and 4-byte pages —f":\h

Operating System Concepts — 8" Edition 8.6 Silberschatz, Galvin and Gagne ©2009

wak -/
r Free Frames
free-frame list free-frame list
14 15
13 13 13 [page 1
14 14 |page 0
15 15
16 16
17 17
18 18 [page 2|
19 19
20 20 |page 3
21 new-process page table 21
(a) (b)
i After allocati D
Before allocation er allocation A58
P L
Operating System Concepts — 8" Edition 8.7 Silberschatz, Galvin and Gagne ©200§

™

“»”/ Implementation of Page Table

Page table is kept in main memory
Page-table base register (PTBR) points to the page table

Page-table length register (PRLR) indicates size of the
page table

®m In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

® The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBsS)

m Some TLBs store address-space identifiers (ASIDs) in
each TLB entry — uniquely identifies each process to provide
address-space protection for that process

—

=
b5

Operating System Concepts — 81" Edition 8.8 Silberschatz, Galvin and Gagne ©2009

™

‘v’ Assoclative Memory

® Associative memory — parallel search
Page # Frame #

Address translation (p, d)
e If pisin associative register, get frame # out

e Otherwise get frame # from page table in memory

o

Operating System Concepts — 8" Edition 8.9 Silberschatz, Galvin and Gagne ©2009

™

*\J

w-—f Paging Hardware With TLB

logical
address
CPU p

page frame
number number

TLB hit

physical
address

TLB

p {
TLB miss

f
—_— physical
memory

page table

piEs
S

A5

Operating System Concepts — 81" Edition 8.10 Silberschatz, Galvin and Gagne ©2009

Memory Protection

® Memory protection implemented by associating protection bit
with each frame

m Valid-invalid bit attached to each entry in the page table:

e ‘“valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

e ‘“invalid” indicates that the page is not in the process’
logical address space

Operating System Concepts — 8" Edition 8.11 Silberschatz, Galvin and Gagne ©2009

‘-*-’iﬁ’\/alid (v) or Invalid (i) Bit In A Page Table

0
1
2| page 0
00000 frame number valid-invalid bit
page 0 \ / 3| page 1
o|2|wv
page 1 1lalv 4| page 2
2(4|v
age 2 5
bag 3|7 |v
page 3 48|V [
5|9 |v
page 4 slo]i 7| page3
= -
10468 page 5 oli 8| paged
12,287 page table
9| page 5
-
-
.
page n

Operating System Concepts — 81" Edition 8.12 Silberschatz, Galvin and Gagne ©2009

™,

(o
2 Shared Pages

m Shared code

e One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

e Shared code must appear in same location in the logical
address space of all processes

m Private code and data
e Each process keeps a separate copy of the code and data

e The pages for the private code and data can appear
anywhere in the logical address space

Operating System Concepts — 8" Edition 8.13 Silberschatz, Galvin and Gagne ©2009

™
Tk o/
r Shared Pages Example
ed 1 1]
3
ed2 E 1| datai
ed3 B 2| data3
[1]
data 1 page table 3| edt
for Py ed1
process P, (3] 4| ed2
ed2 | 4 | .
ed3 |5
L 6 ed3
data 2 page table
s for P, 7| data2
P
B process P, .
ed 2
= 0
ed3
E 10
data 3 page table

for Py 11 -
process P, [:‘;)

Operating System Concepts — 81" Edition 8.14 Silberschatz, Galvin and Gagne ©2009

™

S Structure of the Page Table

m Hierarchical Paging

m Hashed Page Tables

®m Inverted Page Tables

~

o)
Operating System Concepts — 8" Edition 8.15 Silberschatz, Galvin and Gagne ©200§
™
(o
At r . -
r Hierarchical Page Tables

m Break up the logical address space into multiple page tables

m A simple technique is a two-level page table

—

=
b5

Operating System Concepts — 81" Edition 8.16 Silberschatz, Galvin and Gagne ©2009

™

s...-;;,ﬁ?..-/ Two-Level Paglng Examp|e

m A logical address (on 32-bit machine with 1K page size) is divided into:
e a page number consisting of 22 bits
e a page offset consisting of 10 bits

m Since the page table is paged, the page number is further divided into:
® a 12-bit page number
® a 10-bit page offset

m Thus, alogical address is as follows:

page number page offset

’pi‘pz d

12 10 10

where p; is an index into the outer page table, and p, is the displacement within
the page of the outer page table

Operating System Concepts — 8" Edition 8.17 Silberschatz, Galvin and Gagne ©2009

n

%7/ Two-Level Page-Table Scheme

0
|
2 O
/ : 100}—=
500 N
\ - / g |
[~_100 500
08— | ¢
. 708
outer page \“-- 929 E
table 3 ™N 800
<
page of 929
page table
page table : =
memory /‘f\‘
P bl
(=

Operating System Concepts — 81" Edition 8.18 Silberschatz, Galvin and Gagne ©2009

(0

e
2?7’ Address-Translation Scheme

logical address

oo 7] d]

{

=

outer page d {
table
page of
page table
f“ “\‘
Operating System Concepts — 8" Edition 8.19 Silberschatz, Galvin and Gagne ©2009
™
il r
r Hashed Page Tables

® Common in address spaces > 32 bits

® The virtual page number is hashed into a page table

e This page table contains a chain of elements hashing to the
same location

m Virtual page numbers are compared in this chain searching for a
match

e If a match is found, the corresponding physical frame is
extracted

Operating System Concepts — 81" Edition 8.20 Silberschatz, Galvin and Gagne ©2009

r i Hashed Page Table
physical
logical address address
[pLd i
physical
fur:c’:?'tgn '_'|q|5|’T|-I|p|’|i_T‘“ memory
hash table
£
Operating System Concepts — 8" Edition 8.21 Silberschatz, Galvin and Gagné ©20-5.9
™
. d Inverted Page Table

One entry for each real page of memory

Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

m Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

B Use hash table to limit the search to one — or at most a
few — page-table entries

Operating System Concepts — 81" Edition 8.22 Silberschatz, Galvin and Gagne ©2009

™

“»”" Inverted Page Table Architecture

logecsi hysical
address P dgi
: = btk physical
cPU —fpd[p[d] [ITdF—1 [emony
search l i
pid [p
page table
£
W =
Operating System Concepts — 8" Edition 8.23 Silberschatz, Galvin and Gagne ©2009
.
Tad J .
rd Segmentation

® Memory-management scheme that supports user view of memory
m A program is a collection of segments
e A segmentis a logical unit such as:
main program
procedure
function
method
object
local variables, global variables
common block
stack
symbol table
arrays

Operating System Concepts — 81" Edition 8.24 Silberschatz, Galvin and Gagne ©2009

User’s View of a Program

subroutine

logical address

—

>

= (4,

Operating System Concepts — 8" Edition 8.25 Silberschatz, Galvin and Gagne ©20

=
@

™

“»”/ Logical View of Segmentation

user space physical memory space

—

o)

= (4,

Operating System Concepts — 81" Edition 8.26 Silberschatz, Galvin and Gagne ©20

=1
@

‘*v Segmentation Architecture

® Logical address consists of a two tuple:
<segment-number, offset>,

m Segment table — maps two-dimensional physical addresses;
each table entry has:

e base — contains the starting physical address where the
segments reside in memory

e |imit — specifies the length of the segment

B Segment-table base register (STBR) points to the segment
table’s location in memory

B Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

<

8.27 Silberschatz, Galvin and Gagne ©20

M

ok
@

Operating System Concepts — 8" Edition

=

Y e))
“‘"_*;"’ Segmentation Architecture (Cont.)

m Protection
e With each entry in segment table associate:
» validation bit = 0 = illegal segment
» read/write/execute privileges

m Protection bits associated with segments; code sharing
occurs at segment level

B Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

m A segmentation example is shown in the following diagram

SR

[

S k
@

Operating System Concepts — 81" Edition 8.28 Silberschatz, Galvin and Gagne ©20

=

%.—r;‘_’/’,-!

Segmentation Hardware

limit |base

segment
table

CPU

Y
trap: addressing error

Operating System Concepts — 8" Edition 8.29

A 4

physical memory

Silberschatz, Galvin and Gagne ©2009

T

ik o/

Example of Segmentation

sagment 2

loglcal address space

Operating System Concepts — 8" Edition

subroutine stack
segment 3
|
symbol
sagment 0 table
limit_| base |
sagment 4 Q| 1000 | 1400
1| 400 | 6300
main 2| 400 | 4300
program 3| 1100 | 3200
4| 1000 | 4700 |
segment table

1400

2400

3200

4300
4700

H700
G300
G700

physical memory

sagment 0

segment 2

segment 4|

{

|

\
%" .

il

o

Silberschatz, Galvin and Gagne ©2009

End of Chapter 8

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

