
8.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Memory Management

 Background

 Contiguous Memory Allocation

 Swapping

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel Pentium

(slides selected/reordered by R. Doemer, 01/28/09)

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging

 Logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available

 Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8,192 bytes)

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size n pages, need to find n free frames
and load program

 Set up a page table to translate logical to physical addresses

 Internal fragmentation

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which
contains base address of each page in physical memory

 Page offset (d) – combined with base address to define the
physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m - n n

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Model of Logical and Physical Memory

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Example

32-byte memory and 4-byte pages

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free Frames

Before allocation After allocation

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PRLR) indicates size of the
page table

 In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

 The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in
each TLB entry – uniquely identifies each process to provide
address-space protection for that process

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Associative Memory

 Associative memory – parallel search

Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Page # Frame #

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware With TLB

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Protection

 Memory protection implemented by associating protection bit
with each frame

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid (v) or Invalid (i) Bit In A Page Table

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical
address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear
anywhere in the logical address space

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Pages Example

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within
the page of the outer page table

page number page offset

pi p2 d

12 10 10

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Page-Table Scheme

8.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Address-Translation Scheme

8.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the
same location

 Virtual page numbers are compared in this chain searching for a
match

 If a match is found, the corresponding physical frame is
extracted

8.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Table

8.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Table

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page

 Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

 Use hash table to limit the search to one — or at most a
few — page-table entries

8.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Table Architecture

8.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

main program

procedure

function

method

object

local variables, global variables

common block

stack

symbol table

arrays

8.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User’s View of a Program

8.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses;
each table entry has:

 base – contains the starting physical address where the
segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment
table’s location in memory

 Segment-table length register (STLR) indicates number of
segments used by a program;

segment number s is legal if s < STLR

8.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Architecture (Cont.)

 Protection

 With each entry in segment table associate:

 validation bit = 0 illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing
occurs at segment level

 Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

8.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Hardware

8.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Segmentation

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 8

