Chapter 9: Virtual Memory

(slides selected/reordered/fixed by R. Doemer, 02/02/09)

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

'l

=YY
1

Chapter 9: Virtual Memory

Background
Demand Paging
Copy-on-Write
Page Replacement

Operating System Concepts — 81" Edition 9.2 Silberschatz, Galvin and Gagne ©2009

™

(em
. & Background

m Virtual memory — separation of user logical memory from physical
memory.

e Only part of the program needs to be in memory for execution

e Logical address space can therefore be much larger than physical
address space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

® Virtual memory can be implemented via:

e Demand paging
e Demand segmentation

—

>

= (4,

Operating System Concepts — 8" Edition 9.3 Silberschatz, Galvin and Gagne ©20

=}
@

™

‘-"'},_""Virtual Memory That is Larger Than Physical Memory

page 0
page 1 —
page 2 —lI — N
B
—_—
EEBE

'<j
/

J

i memory)
miip e e
page v physical
E memory
virtual
memaory

—

o)

= (4,

Operating System Concepts — 8" Edition 9.4 Silberschatz, Galvin and Gagne ©20f

=1
@

Virtual-address Space

Operating System Concepts — 8" Edition

stack

heap

data

code

9.5

Silberschatz, Galvin and Gagne ©2009

P v
“#”Shared Library Using Virtual Memory

stack

shared library

heap

data

code

Operating System Concepts — 8 Edition

stack

shared
pages

!

shared library

9.6

heap

data

code

2. |

Silberschatz, Galvin and Gagne ©2009

"'-‘;i_,"” Demand Paglng

® Bring a page into memory only when it is needed
e Less I/O needed
e Less memory needed
e Faster response
e More users

B Page is needed = reference to it
e invalid reference = abort

e not-in-memory = bring to memory

B | azy swapper — never swaps a page into memory unless page will be
needed

e Swapper that deals with pages is a pager

- .

L

/C;\

Operating System Concepts — 8" Edition 9.7 Silberschatz, Galvin and Gagne ©2009

™

&':;"‘_»'IJransfer of a Paged Memory to Contiguous Disk Space

e .
__‘__’__/
swap out o] 10 2[] 3]

e e

8] eio[J11 0

"

12 1a[14 15[
BRgam ~_ swapin 16[117[J18[J19[]
20121220231
e
main
memaorv el
W

Operating System Concepts — 81" Edition 9.8 Silberschatz, Galvin and Gagne ©2009

&.h,-'. " - - -
> Valid-Invalid Bit
m With each page table entry a valid—invalid bit is associated
(v = valid, in-memory, i = invalid, or not-in-memory)
Initially valid—invalid bit is set to i on all entries
m Example of a page table snapshot:
Frame # valid-invalid bit
\
v
Y
\Y
i
i
i
page table

m During address translation, if valid—invalid bit in page table entry is i

= page fault

Operating System Concepts — 8" Edition 9.9

(slide fixed by R. Doemer, 02/02/09)

Silberschatz, Galvin and Gagne ©2009

0
1
(4] A 2
valid-invalid —
1 B frame b'tl 3 \;_ __-:-/
gl e ofalv 408 r_?m
a3l D 1 5 b
| E) s o 0 E =
5 F 4 7 — .
5| [c] @] [E
] G 5: 8
7| H 7| of F [s] [H]
gkl page table 10 e
memary |] | l]
1 @ i
12 T
13
14
15

phwvsical memory

Operating System Concepts — 8 Edition

Silberschatz, Galvin and Gagne ©2009

. & Page Fault

m [f there is a reference to a page, first reference to that page will
trap to operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory = goto step 2

2. Get empty frame
3. Swap page into frame
4. Update tables
5. Set valid-invalid bit to v
6. Restart the instruction that caused the page fault
(slide fixed by R. Doemer, 02/02/09) V)
Operating System Concepts — 8" Edition 9.11 Silberschatz, Galvin and Gagne ©2009

“#77 Steps in Handling a Page Fault

@) page is on
backing store ——
r— =N
\\n‘_‘_‘___'_,_,/
operating
system
2
reference &2
| @
load M
restart
instruction
free frame ~ o
® @
update bring in
page missing page
tables
physical
memory

(slide fixed by R. Doemer, 02/02/09_)_

Operating System Concepts — 81" Edition 9.12 Silberschatz, Galvin and Gagne ©2009

¥ & Page Fault (Cont.)

m Restart instruction: sometimes not trivial!
Special care may need to be taken!

e Example 1: block move

e Example 2: auto increment/decrement location

(slide fixed by R. Doemer, 02/02/09) "F
Operating System Concepts — 8" Edition 9.13 Silberschatz, Galvin and Gagne ©2009
.
i r -
rd Process Creation

m Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

Operating System Concepts — 81" Edition 9.14 Silberschatz, Galvin and Gagne ©2009

¥ d] Copy-on-Write

m Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

If either process modifies a shared page, only then is the page copied

m COW allows more efficient process creation as only modified pages are
copied

m Free pages are allocated from a pool of zeroed-out pages

9

T
bl

Silberschatz, Galvin and Gagne ©20

k

=
@

Operating System Concepts — 8" Edition 9.15

™

“»”’ Before Process 1 Modifies Page C

physical
process, memory process,

-~

| > pageA

| L——> pageB ——

-

f“"“\
_r‘ﬁ,‘ 3
(slide fixed by R. Doemer, 02/02/09) f'

Operating System Concepts — 81" Edition 9.16 Silberschatz, Galvin and Gagne ©2009

™

" After Process 1 Modifies Page C

physical
process, memory process,

| > page A

]
T — page B |
—

page C

= Copy of page C

—

>

= (4,

Silberschatz, Galvin and Gagne ©20

=
@

Operating System Concepts — 8" Edition 9.17

™

‘---’;1_," What happens if there is no free frame?

m Page replacement — find some page in memory, that is not
really in use, swap it out

e Algorithm to find victim page

e Performance — we want an algorithm which will result in
minimum number of page faults

® Same page may be brought into memory several times

(slide fixed by R. Doemer, 02/02/09_)_

Operating System Concepts — 81" Edition 9.18 Silberschatz, Galvin and Gagne ©2009

bl
r Page Replacement
m Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement
m Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk
m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory
Operating System Concepts — 8" Edition 9.19 Silberschatz, Galvin and Gagne ©2009
™
(TS
. .
r Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame,
use it
- If there is no free frame,
use page replacement algorithm to select a victim frame

3. Swap out the victim page;
bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the instruction

(slide fixed by R. Doemer, 02/02/09)_

Operating System Concepts — 81" Edition 9.20 Silberschatz, Galvin and Gagne ©2009

g
" Page Replacement

frame valid—invalid bit

swap out
change victim

o [i to invalid %—VD
@ | victim
Update page \
table for
page takle new page @ swap ‘\:‘
desired

page in

physical
memory
(slide fixed by R. Doemer, 02/02/09) b
Operating System Concepts — 8 Edition 9.21 Silberschatz, Galvin and Gagne ©2009

™

-f-‘-"'“j
L""“"Gfaph of Page Faults Versus The Number of Frames

General expectation:

16
£ My
2 12 \
3 \
o
@ 10
g \
c 8 N
éa \‘__
g 4 — S

2

1 2 3 4 5 6

number of frames

(slide fixed by R. Doemer, 02/02/09_)_ =

Operating System Concepts — 8" Edition 9.22 Silberschatz, Galvin and Gagne ©2009

»”" Page Replacement Algorithms
m Want lowest page-fault rate
m Evaluate algorithm by
running it on a particular string of memory references (reference string)
and counting the number of page faults on that string
m |n all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5
/-*" ‘\\
__ A
(slide fixed by R. Doemer, 02/02/09) ’3&‘}'
Operating System Concepts — 8" Edition 9.23 Silberschatz, Galvin and Gagne ©2009

| -..:”‘vag_
“%77 First-In-First-Out (FIFO) Algorithm

m Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

2 1 3 9 page faults

313|2 4

(slide split by R. Doemer, 02/02/09)
Silberschatz, Galvin and Gagne ©20!

S k
@

Operating System Concepts — 8 Edition 9.24

o vl : -
“%77 First-In-First-Out (FIFO) Algorithm

m 3 frames (3 pages can be in memory at a time per process)

2 1 3 9 page faults
m 4 frames
11115 4
2 12| 1 5 10page faults
313|2
4 |14|3
m Belady’'s Anomaly: more frames = more page faults =
y y pag B /;',;;‘:}\
4 W
Operating System Concepts — 8 Edition 9.25 Silberschatz, Galvin and Gagne ©2009

= Yy
“$77FIFO lllustrating Belady’s Anomaly

14
12

number of page faults
o

1 2 3 4 5 6
number of frames

-

7

A

N
b5
009

Operating System Concepts — 8" Edition 9.26 Silberschatz, Galvin and Gagne ©2

™

|

r & Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4,1,2,5/1,2,3,4,5

6 page faults

(2 fe]m]~]

® How do you know this?
m Used for measuring how well your algorithm performs

<

Silberschatz, Galvin and Gagne ©20

M

ok
@

Operating System Concepts — 8" Edition 9.27

"""Fi}:lieast Recently Used (LRU) Algorithm

m Reference string: 1,2,51,2,3,4,5

L
N
w
»

(oo]o]n]

(o[> [~]r]

5]
2]
4]
3]

(2 fe]o]n]

BEINE

m Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change

(slide fixed by R. Doemer, 02/02/09)_

Operating System Concepts — 81" Edition 9.28 Silberschatz, Galvin and Gagne ©2009

™

.

P LRU Algorithm (Cont.)

m Stack implementation — keep a stack of page numbers in a double link form:
e Page referenced:
» move it to the top
» requires 6 pointers to be changed
e No search for replacement

Operating System Concepts — 8" Edition 9.29 Silberschatz, Galvin and Gagne ©20

=

.

“$7/ LRU Approximation Algorithms

m Reference bit
e With each page associate a bit, initially = 0
e When page is referenced bit set to 1
e Replace the one which is 0 (if one exists)
» We do not know the order, however
m Second chance
e Need reference bit
e Clock replacement
e |f page to be replaced (in clock order) has reference bit = 1 then:
» set reference bit 0

» leave page in memory
» replace next page (in clock order), subject to same rules

A

Operating System Concepts — 81" Edition 9.30 Silberschatz, Galvin and Gagne ©20

(8

k

=1
@

™.

“"},”’Second-Chance (clock) Page-Replacement Algorithm

reference pages reference pages
bits. bits.
[°] []
[o] [e]
vioim =il [o]
[1] [e]
[o] ={0]
. 5
[[
circular queue of pages circular queue of pages
(a) (b} e
W%
s
Operating System Concepts — 8" Edition 9.31 Silberschatz, Galvin and Gagne ©2009
™.
ik) . H
Il Counting Algorithms

m Keep a counter of the number of references that have been
made to each page

m LFU Algorithm: replaces page with smallest count

® MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used

—

: !{'{D

Operating System Concepts — 81" Edition 9.32 Silberschatz, Galvin and Gagne ©20

k

=1
@

