
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 9: Virtual Memory

(slides selected/reordered/fixed by R. Doemer, 02/02/09)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Virtual memory – separation of user logical memory from physical
memory.

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical
address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual-address Space

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Library Using Virtual Memory

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed reference to it

 invalid reference abort

 not-in-memory bring to memory

 Lazy swapper – never swaps a page into memory unless page will be
needed

 Swapper that deals with pages is a pager

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v valid, in-memory, i invalid, or not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i
 page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

(slide fixed by R. Doemer, 02/02/09)

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

 If there is a reference to a page, first reference to that page will
trap to operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference abort

 Just not in memory goto step 2

2. Get empty frame

3. Swap page into frame

4. Update tables

5. Set valid-invalid bit to v

6. Restart the instruction that caused the page fault

(slide fixed by R. Doemer, 02/02/09)

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

(slide fixed by R. Doemer, 02/02/09)

update
page
tables

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault (Cont.)

 Restart instruction: sometimes not trivial!
Special care may need to be taken!

 Example 1: block move

 Example 2: auto increment/decrement location

(slide fixed by R. Doemer, 02/02/09)

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are
copied

 Free pages are allocated from a pool of zeroed-out pages

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Before Process 1 Modifies Page C

(slide fixed by R. Doemer, 02/02/09)

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

After Process 1 Modifies Page C

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

What happens if there is no free frame?

 Page replacement – find some page in memory, that is not
really in use, swap it out

 Algorithm to find victim page

 Performance – we want an algorithm which will result in
minimum number of page faults

 Same page may be brought into memory several times

(slide fixed by R. Doemer, 02/02/09)

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified
pages are written to disk

 Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame,

use it
- If there is no free frame,

use page replacement algorithm to select a victim frame

3. Swap out the victim page;
bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the instruction

(slide fixed by R. Doemer, 02/02/09)

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

(slide fixed by R. Doemer, 02/02/09)

Update page
table for
new page

9.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Graph of Page Faults Versus The Number of Frames

(slide fixed by R. Doemer, 02/02/09)

General expectation:

9.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Want lowest page-fault rate

 Evaluate algorithm by
running it on a particular string of memory references (reference string)
and counting the number of page faults on that string

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(slide fixed by R. Doemer, 02/02/09)

9.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

(slide split by R. Doemer, 02/02/09)

9.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 Belady’s Anomaly: more frames more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to
determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

(slide fixed by R. Doemer, 02/02/09)

9.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in a double link form:

 Page referenced:

move it to the top

 requires 6 pointers to be changed

 No search for replacement

9.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Approximation Algorithms

 Reference bit
 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace the one which is 0 (if one exists)

 We do not know the order, however

 Second chance
 Need reference bit

 Clock replacement

 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0

 leave page in memory

 replace next page (in clock order), subject to same rules

9.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Counting Algorithms

 Keep a counter of the number of references that have been
made to each page

 LFU Algorithm: replaces page with smallest count

 MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used

