
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 9: Virtual Memory

(slides selected/reordered/fixed by R. Doemer, 02/02/09)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Virtual memory – separation of user logical memory from physical
memory.

 Only part of the program needs to be in memory for execution

 Logical address space can therefore be much larger than physical
address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory



9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual-address Space

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Library Using Virtual Memory

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed  reference to it

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory unless page will be
needed

 Swapper that deals with pages is a pager

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  valid, in-memory, i  invalid, or not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i
 page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

(slide fixed by R. Doemer, 02/02/09)

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

 If there is a reference to a page, first reference to that page will
trap to operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference  abort

 Just not in memory  goto step 2

2. Get empty frame

3. Swap page into frame

4. Update tables

5. Set valid-invalid bit to v

6. Restart the instruction that caused the page fault

(slide fixed by R. Doemer, 02/02/09)

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

(slide fixed by R. Doemer, 02/02/09)

update
page
tables

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault (Cont.)

 Restart instruction: sometimes not trivial!
Special care may need to be taken!

 Example 1: block move

 Example 2: auto increment/decrement location

(slide fixed by R. Doemer, 02/02/09)

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write

 Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are
copied

 Free pages are allocated from a pool of zeroed-out pages

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Before Process 1 Modifies Page C

(slide fixed by R. Doemer, 02/02/09)

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

After Process 1 Modifies Page C

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

What happens if there is no free frame?

 Page replacement – find some page in memory, that is not
really in use, swap it out

 Algorithm to find victim page

 Performance – we want an algorithm which will result in
minimum number of page faults

 Same page may be brought into memory several times

(slide fixed by R. Doemer, 02/02/09)

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only modified
pages are written to disk

 Page replacement completes separation between logical memory and
physical memory – large virtual memory can be provided on a smaller
physical memory

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame,

use it
- If there is no free frame,

use page replacement algorithm to select a victim frame

3. Swap out the victim page;
bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the instruction

(slide fixed by R. Doemer, 02/02/09)

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

(slide fixed by R. Doemer, 02/02/09)

Update page
table for
new page

9.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Graph of Page Faults Versus The Number of Frames

(slide fixed by R. Doemer, 02/02/09)

General expectation:

9.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Want lowest page-fault rate

 Evaluate algorithm by
running it on a particular string of memory references (reference string)
and counting the number of page faults on that string

 In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(slide fixed by R. Doemer, 02/02/09)

9.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

(slide split by R. Doemer, 02/02/09)

9.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Used for measuring how well your algorithm performs

1

2

3

4

6 page faults

4 5

9.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Counter implementation

 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to
determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

(slide fixed by R. Doemer, 02/02/09)

9.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Algorithm (Cont.)

 Stack implementation – keep a stack of page numbers in a double link form:

 Page referenced:

move it to the top

 requires 6 pointers to be changed

 No search for replacement

9.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Approximation Algorithms

 Reference bit
 With each page associate a bit, initially = 0

 When page is referenced bit set to 1

 Replace the one which is 0 (if one exists)

 We do not know the order, however

 Second chance
 Need reference bit

 Clock replacement

 If page to be replaced (in clock order) has reference bit = 1 then:

 set reference bit 0

 leave page in memory

 replace next page (in clock order), subject to same rules

9.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Counting Algorithms

 Keep a counter of the number of references that have been
made to each page

 LFU Algorithm: replaces page with smallest count

 MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used

