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. & Background

m Virtual memory — separation of user logical memory from physical
memory.

e Only part of the program needs to be in memory for execution

e Logical address space can therefore be much larger than physical
address space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

® Virtual memory can be implemented via:

e Demand paging
e Demand segmentation

—

>

= (4,

Operating System Concepts — 8" Edition 9.3 Silberschatz, Galvin and Gagne ©20

=}
@

™

‘-"'},_""Virtual Memory That is Larger Than Physical Memory
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Virtual-address Space
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"'-‘;i_,"” Demand Paglng

® Bring a page into memory only when it is needed
e Less I/O needed
e Less memory needed
e Faster response
e More users

B Page is needed = reference to it
e invalid reference = abort

e not-in-memory = bring to memory

B | azy swapper — never swaps a page into memory unless page will be
needed

e Swapper that deals with pages is a pager
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> Valid-Invalid Bit
m  With each page table entry a valid—invalid bit is associated
(v = valid, in-memory, i = invalid, or not-in-memory)
Initially valid—invalid bit is set to i on all entries
m  Example of a page table snapshot:
Frame # valid-invalid bit
\
v
Y
\Y
i
i
i
page table

m  During address translation, if valid—invalid bit in page table entry is i

= page fault
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. & Page Fault

m [f there is a reference to a page, first reference to that page will
trap to operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory = goto step 2

2. Get empty frame
3. Swap page into frame
4. Update tables
5. Set valid-invalid bit to v
6. Restart the instruction that caused the page fault
(slide fixed by R. Doemer, 02/02/09) V)
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“#77  Steps in Handling a Page Fault
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¥ & Page Fault (Cont.)

m  Restart instruction: sometimes not trivial!
Special care may need to be taken!

e Example 1: block move

e Example 2: auto increment/decrement location

(slide fixed by R. Doemer, 02/02/09) "F
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rd Process Creation

m  Virtual memory allows other benefits during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

Operating System Concepts — 81" Edition 9.14 Silberschatz, Galvin and Gagne ©2009




¥ d] Copy-on-Write

m  Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

If either process modifies a shared page, only then is the page copied

m  COW allows more efficient process creation as only modified pages are
copied

m Free pages are allocated from a pool of zeroed-out pages
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“»”’ Before Process 1 Modifies Page C
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" After Process 1 Modifies Page C
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‘---’;1_," What happens if there is no free frame?

m Page replacement — find some page in memory, that is not
really in use, swap it out

e Algorithm to find victim page

e Performance — we want an algorithm which will result in
minimum number of page faults

® Same page may be brought into memory several times

(slide fixed by R. Doemer, 02/02/09_)_
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r Page Replacement
m Prevent over-allocation of memory by modifying page-fault service routine
to include page replacement
m Use modify (dirty) bit to reduce overhead of page transfers — only modified
pages are written to disk
m Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory
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r Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame,
use it
- If there is no free frame,
use page replacement algorithm to select a victim frame

3. Swap out the victim page;
bring the desired page into the (newly) free frame;
update the page and frame tables

4. Restart the instruction

(slide fixed by R. Doemer, 02/02/09)_

Operating System Concepts — 81" Edition 9.20 Silberschatz, Galvin and Gagne ©2009




g
" Page Replacement
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»”"  Page Replacement Algorithms
m  Want lowest page-fault rate
m  Evaluate algorithm by
running it on a particular string of memory references (reference string)
and counting the number of page faults on that string
m |n all our examples, the reference string is
1,2,3,4,1,2,5,1,2,3,4,5
/-*" ‘\\
__ A
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“%77 First-In-First-Out (FIFO) Algorithm

m  Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

2 1 3 9 page faults
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“%77 First-In-First-Out (FIFO) Algorithm

m 3 frames (3 pages can be in memory at a time per process)

2 1 3 9 page faults
m 4 frames
11115 4
2 12| 1 5 10page faults
313|2
4 |14|3
m  Belady’'s Anomaly: more frames = more page faults =
y y pag B /;',;;‘:}\
4 W
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r & Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4,1,2,5/1,2,3,4,5

6 page faults

(2 fe]m]~]

® How do you know this?
m  Used for measuring how well your algorithm performs
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"""Fi}:lieast Recently Used (LRU) Algorithm

m Reference string: 1,2,51,2,3,4,5
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m  Counter implementation

e Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

e When a page needs to be changed, look at the counters to
determine which are to change

(slide fixed by R. Doemer, 02/02/09)_
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P LRU Algorithm (Cont.)

m  Stack implementation — keep a stack of page numbers in a double link form:
e Page referenced:
» move it to the top
» requires 6 pointers to be changed
e No search for replacement
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“$7/ LRU Approximation Algorithms

m Reference bit
e With each page associate a bit, initially = 0
e When page is referenced bit set to 1
e Replace the one which is 0 (if one exists)
» We do not know the order, however
m  Second chance
e Need reference bit
e Clock replacement
e |f page to be replaced (in clock order) has reference bit = 1 then:
» set reference bit 0

» leave page in memory
» replace next page (in clock order), subject to same rules
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“"},”’Second-Chance (clock) Page-Replacement Algorithm
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Il Counting Algorithms

m Keep a counter of the number of references that have been
made to each page

m LFU Algorithm: replaces page with smallest count

® MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used
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