
9.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

(slides selected/reordered/fixed by R. Doemer, 02/02/09)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation of Frames

 Each process needs minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

 Proportional allocation – Allocate according to the size of process

m
S
s

pa

m

sS

ps

i
ii

i

ii








 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2









a

a

s

s

m

i

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather than
size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower
priority number

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another

 Local replacement – each process selects from only its
own set of allocated frames

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of
multiprogramming

 another process added to the system

 Thrashing  a process is busy swapping pages in and out

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing (Cont.)

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging and Thrashing

 Why does demand paging work?
Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?
 size of locality > total memory size

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Locality In A Memory-Reference Pattern

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-Set Model

   working-set window  a fixed number of page references
Example: 10,000 instruction

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent  (varies in time)

 if  too small will not encompass entire locality

 if  too large will encompass several localities

 if  =   will encompass entire program

 D =  WSSi  total demand frames

 if D > m  Thrashing

 Policy if D > m, then suspend one of the processes

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-set model

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit in hardware

 Example:  = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 additional bits for each page

 Whenever the timer interrupts,
shift the bits in memory,
copy the hardware bits to the first bit in memory, and
set the values of all hardware reference bits to 0

 If one of the bits = 1  page in working set

 Why is this not completely accurate?

 Can’t tell when exactly reference occurred

 Improvement: 10 bits and interrupt every 1000 time units

(slide fixed by R. Doemer, 02/02/09)

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized portion of the file is
read from the file system into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather than
read() write() system calls

 Also allows several processes to map the same file allowing the pages in
memory to be shared

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Mapped Files

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues -- Prepaging

 Prepaging

 To reduce the large number of page faults that occurs at process
startup

 Prepage all or some of the pages a process will need, before
they are referenced

 But if prepaged pages are unused, I/O and memory was wasted

 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?

α near zero  prepaging loses

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Page Size

 Page size selection must take into consideration:

 fragmentation

 table size

 I/O overhead

 locality

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all
applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Program Structure

 Program structure

 int data[128,128];

 Each row is stored in one page

 Program 1

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

 Program 2

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

(slide fixed by R. Doemer, 02/02/09)

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into
memory

 Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Reason Why Frames Used For I/O Must Be In Memory

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 9

