
9.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

(slides selected/reordered/fixed by R. Doemer, 02/02/09)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation of Frames

 Each process needs minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Two major allocation schemes

 fixed allocation

 priority allocation

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames and 5
processes, give each process 20 frames.

 Proportional allocation – Allocate according to the size of process

m
S
s

pa

m

sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2

a

a

s

s

m

i

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather than
size

 If process Pi generates a page fault,

 select for replacement one of its frames

 select for replacement a frame from a process with lower
priority number

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement
frame from the set of all frames; one process can take a
frame from another

 Local replacement – each process selects from only its
own set of allocated frames

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is
very high. This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of
multiprogramming

 another process added to the system

 Thrashing a process is busy swapping pages in and out

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing (Cont.)

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging and Thrashing

 Why does demand paging work?
Locality model

 Process migrates from one locality to another

 Localities may overlap

 Why does thrashing occur?
 size of locality > total memory size

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Locality In A Memory-Reference Pattern

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-Set Model

 working-set window a fixed number of page references
Example: 10,000 instruction

 WSSi (working set of Process Pi) =
total number of pages referenced in the most recent (varies in time)

 if too small will not encompass entire locality

 if too large will encompass several localities

 if = will encompass entire program

 D = WSSi total demand frames

 if D > m Thrashing

 Policy if D > m, then suspend one of the processes

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-set model

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Keeping Track of the Working Set

 Approximate with interval timer + a reference bit in hardware

 Example: = 10,000

 Timer interrupts after every 5000 time units

 Keep in memory 2 additional bits for each page

 Whenever the timer interrupts,
shift the bits in memory,
copy the hardware bits to the first bit in memory, and
set the values of all hardware reference bits to 0

 If one of the bits = 1 page in working set

 Why is this not completely accurate?

 Can’t tell when exactly reference occurred

 Improvement: 10 bits and interrupt every 1000 time units

(slide fixed by R. Doemer, 02/02/09)

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated as routine memory
access by mapping a disk block to a page in memory

 A file is initially read using demand paging. A page-sized portion of the file is
read from the file system into a physical page. Subsequent reads/writes
to/from the file are treated as ordinary memory accesses.

 Simplifies file access by treating file I/O through memory rather than
read() write() system calls

 Also allows several processes to map the same file allowing the pages in
memory to be shared

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Mapped Files

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues -- Prepaging

 Prepaging

 To reduce the large number of page faults that occurs at process
startup

 Prepage all or some of the pages a process will need, before
they are referenced

 But if prepaged pages are unused, I/O and memory was wasted

 Assume s pages are prepaged and α of the pages is used

 Is cost of s * α save pages faults > or < than the cost of
prepaging
s * (1- α) unnecessary pages?

α near zero prepaging loses

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Page Size

 Page size selection must take into consideration:

 fragmentation

 table size

 I/O overhead

 locality

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – TLB Reach

 TLB Reach - The amount of memory accessible from the TLB

 TLB Reach = (TLB Size) X (Page Size)

 Ideally, the working set of each process is stored in the TLB

 Otherwise there is a high degree of page faults

 Increase the Page Size

 This may lead to an increase in fragmentation as not all
applications require a large page size

 Provide Multiple Page Sizes

 This allows applications that require larger page sizes the
opportunity to use them without an increase in
fragmentation

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Program Structure

 Program structure

 int data[128,128];

 Each row is stored in one page

 Program 1

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

 Program 2

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

(slide fixed by R. Doemer, 02/02/09)

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – I/O interlock

 I/O Interlock – Pages must sometimes be locked into
memory

 Consider I/O - Pages that are used for copying a file
from a device must be locked from being selected for
eviction by a page replacement algorithm

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Reason Why Frames Used For I/O Must Be In Memory

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 9

