
EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 2

Lecture 1: Overview

• Course administration
– Communication

• Course overview
– Context and Contents
– Objectives and Outcomes
– Literature

• Introduction to Embedded Systems
– Overview
– Characteristics and Applications
– Embedded Software Issues

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 2

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 3

Course Administration

• Course web pages at
http://eee.uci.edu/10f/18415/
– Instructor information

– Course description

– Course syllabus

– Course objectives and outcomes

– Course resources

– Assignments

• Course communication
– Message board

– Email

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 4

Course Context

• EECS 222: Set of 4 courses on SoC Design

A. System-on-Chip Description and Modeling

B. System-on-Chip Design and Exploration

C. System-on-Chip Software Synthesis

D. System-on-Chip Hardware Synthesis

• Course A is prerequisite for B, C, and D,
or consent of instructor

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 5

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling

Computational models for System-on-Chip (SoC). System-
level specification and description languages and
execution semantics. Concepts, requirements, examples.
SoC modeling at different levels of abstraction (untimed,
approximate time, cycle-accurate). Modeling of IP (IP
wrappers), design constraints, test benches. Simulation
semantics and algorithms. Co-simulation methodology.

B. System-on-Chip Design and Exploration

C. System-on-Chip Software Synthesis

D. System-on-Chip Hardware Synthesis

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 6

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling

B. System-on-Chip Design and Exploration
System-on-Chip design flow and methodology. Design
space exploration. Co-design of hardware and software,
hardware/software partitioning. System-on-Chip
architecture exploration and synthesis. On-chip network
and communication design and synthesis. On-chip
software/hardware interface generation.

C. System-on-Chip Software Synthesis
D. System-on-Chip Hardware Synthesis

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 4

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 7

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling
B. System-on-Chip Design and Exploration

C. System-on-Chip Software Synthesis
System-on-Chip software concepts, requirements,
examples, for engineering applications such as automotive
and communication. Software synthesis methodology.
Algorithmic specification, design constraints. Applications
using embedded operating systems. Static, dynamic
scheduling. Input/output, interrupt handling. Code
generation, retargetable compilation. Instruction set
simulation. Debugging and prototyping.

D. System-on-Chip Hardware Synthesis

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 8

Course Context

• EECS 222: Set of 4 courses on SoC Design
A. System-on-Chip Description and Modeling
B. System-on-Chip Design and Exploration
C. System-on-Chip Software Synthesis

D. System-on-Chip Hardware Synthesis
Hardware IP specification. Real-time constraints. Cycle-
accurate languages and modeling. Target architectures,
data path and control unit. Design tasks and design
methodology. Behavioral synthesis. Resource allocation,
operation scheduling, binding of operations and variables
to functional units, storage units and busses.
Communication protocol and interface synthesis. Arbiter,
bridge, Transducer, Controller design and synthesis. Net
list generation.

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 5

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 9

Course Contents

• EECS 222C: SoC Software Synthesis
– System-on-Chip software

• concepts, requirements, and examples,
• for engineering applications

such as automotive and communication.

– Software synthesis methodology.
– Algorithmic specification and design constraints.
– Applications using embedded operating systems.
– Static, dynamic, real-time scheduling.
– Input/output, interrupt handling.
– Code generation, retargetable compilation.
– Instruction set simulation.
– Debugging and prototyping.

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 10

Course Goals

• Objectives
– To learn embedded software concepts in System-on-Chip designs

– To be able to design, develop and debug software in SoC designs

– To understand software code generation for SoC

• Outcomes
– Students understand

• the special requirements of software for SoC.

• the process of code generation and integration for SoC.

– Students are able to
• develop application SW, middleware, and/or drivers for SoC.

• implement, test and debug a software application for a SoC.

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 6

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 11

Course Topics

1 – Embedded software concepts, requirements

2 – SoC software specification, modeling

3 – Embedded software design flow

4 – Real-Time Operating Systems (RTOS)

5 – Real-time requirements, real-time scheduling

6 – Software synthesis, code generation

7 – Hardware-dependent Software (HdS)

8 – Target processors

9 – (Cross-) compilation, execution, debugging

10 – Instruction-set simulation

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 12

Course Literature

• Primary Textbooks
– P. Marwedel:

"Embedded System Design",
Kluwer Academic Publishers, Boston, 2003.

– A. Jerraya, S. Yoo, D. Verkest, N. Wehn (editors):
"Embedded Software for SoC",
Kluwer Academic Publishers, Boston, 2003.

– P. Marwedel, G. Goosens (editors):
"Code Generation for Embedded Processors",
Kluwer Academic Publishers, 1995.

– A. Gerstlauer, R. Doemer, J. Peng, D. Gajski:
"System Design: A Practical Guide with SpecC",
Kluwer Academic Publishers, Boston, June 2001.

• Additional Reading
– F. Vahid, T. Givargis:

"Embedded System Design: A Unified Hardware/Software Introduction",
John Wiley and Sons, New York, 2002.

– J. Staunstrup, W. Wolf (editors):
"Hardware/Software Co-Design: Principles and Practice",
Kluwer Academic Publishers, Boston, 1997.

– H. Kopetz:
"Real-time Systems",
Kluwer Academic Publishers, Boston, 1997.

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 7

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 13

Embedded Computer Systems

• Computers are ubiquitous, omnipresent…

• System-on-Chip (SoC) Design:
Design of complex embedded systems
on a single chip

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 14

Embedded Systems

• System embedded into another system
– Constraints from external input (often real-time)

– Application specific (not general purpose)

• Omnipresent in our environment
– In many application domains

– In 2005 [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Pervasive

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 8

Source:
Motorola Inc

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 15

Embedded System Design

• Design challenges
– Often mobile

• Battery powered (low power)

– Often highly reliable
• Extreme environment (e.g. temperature)

– High performance constraints
• Often real-time requirements

– High complexity
• E.g. Mercedes Benz E-class

– 55 electronic control units

– 5 communication busses

– Tightly coupled
• Software

• Hardware

– Rapid development
for low price…

Source: Daimler

Source: Xilinx

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 16

Embedded System Design

• Design Advantages
– Application known at design time

– Environment known at design time

– Allows for customized / optimized solution
• Improved performance

• More functionality

• At lower power

• Custom Platform, SW and HW components
– Multi-Processor System-on-Chip (MPSoC),

• Complete embedded system integrated on a chip

– General-purpose and application-specific processors

– Application Specific Integrated Circuit (ASIC)

– Field Programmable Gate Array (FPGA)

– Circuit board with off-the-shelf-components

Source: simh.trailing-edge.com

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 9

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 17

Design Complexity Challenge

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 18

Design Complexity Challenge

• Productivity Gaps
– Hardware productivity gap

• Capacities in chip size outpace capabilities in chip design

• Moore’s law: chip capacity doubles every 18 months

• HW design productivity estimated at 1.6x over 18 months

– Software productivity gap
• Growth of SW productivity estimated at 2x every 5 years

• Needs in embedded SW estimated at 2x over 10 months

– System productivity gap
• HW gap + SW gap

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 10

Hardware/Software Codesign

• Traditionally, software development follows hardware

• New: Unified, concurrent Design of
– Hardware and

– Software

 Improving Time to Market
– Faster delivery of new products

– Higher probability of on time delivery

 Using a single specification model (System Model)
– New specification model

– New specification language

 Tight integration of
• software development

• hardware development

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 19

Traditional Design Flow

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 20

time

Task

specification fixes in specification

HW design fixes in hardware

HW verification

SW design fixes in software

SW verification

integration & verification

Source: Christian Haubelt (U. Erlangen/Nuremberg),
Andreas Gerstlauer (U. Texas)

EECS222C: SoC Software Synthesis Lecture 1

(c) 2010 R. Doemer 11

Co-Design Flow (ESL Design)

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 21

time

Task

specification
(high-level model) fixes in specification

HW design fixes in hardware

HW verification

SW design fixes in software

SW verification

integration & verification

Source: Christian Haubelt (U. Erlangen/Nuremberg),
Andreas Gerstlauer (U. Texas)

EECS222C: SoC Software Synthesis, Lecture 1 R. Doemer 22

Introduction to Embedded Systems

• Excerpts from Chapter 1 in
“Embedded System Design”
by P. Marwedel (Univ. of Dortmund, Germany),
Kluwer Academic Publishers, 2003.

