
1

- 1 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Configurability -

Configurability
No single RTOS will fit all needs, no overhead for
unused functions tolerated  configurability needed.
 simplest form: remove unused functions (by linker ?).
 Conditional compilation (using #if and #ifdef commands).
 Dynamic data might be replaced by static data.
 Advanced compile-time evaluation useful.
 Object-orientation could lead to a derivation subclasses.

Verification a potential problem of systems
with a large number of derived OSs:
 Each derived OS must be tested thoroughly;
 potential problem for eCos (open source RTOS from Red

Hat), including 100 to 200 configuration points [Takada, 01].

- 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: Configuration of VxWorks

© Windriver

ht
tp

://
w

w
w

.w
in

dr
iv

er
.c

om
/p

ro
du

ct
s/

de
ve

lo
pm

en
t_

to
ol

s/
id

e/
to

rn
ad

o2
/to

rn
ad

o_
2_

ds
.p

df

2

- 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
-Requirement: Disc and network handled by tasks-

Disc & network handled by tasks instead of integrated
drivers
Many ES without disc, a keyboard, a screen or a mouse.

Effectively no device that needs to be supported by all
versions of the OS, except maybe the system timer.
Relatively slow discs & networks can be handled by tasks.

RTOS Standard OS

- 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: WindRiver Platform Industrial Automation

© Windriver

3

- 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Protection is optional-

Protection mechanisms not always necessary:
ES typically designed for a single purpose,
untested programs rarely loaded, SW considered reliable.
(However, protection mechanisms may be needed for safety
and security reasons).

No desire to implement I/O instructions as privileged
instructions and tasks can be allowed to do their own I/O.

Example: Let switch be the address of some switch
Simply use

load register,switch
instead of OS call.

- 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Interrupts not restricted to OS -

Interrupts can be employed by any process
For standard OS: serious source of unreliability.
Since
 embedded programs can be considered to be tested,
 since protection is not necessary and
 since efficient control over a variety of devices is required,
 it is possible to let interrupts directly start or stop tasks (by

storing the tasks start address in the interrupt table).
 More efficient than going through OS services.
 However, composability suffers: if a specific task is

connected to some interrupt, it may be difficult to add
another task which also needs to be started by an event.

4

- 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Embedded operating systems
- Requirement: Real-time capability-

Many embedded systems are real-time (RT) systems and,
hence, the OS used in these systems must be real-time
operating systems (RTOSes).

- 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (1) -

Def.: (A) real-time operating system is an operating system
that supports the construction of real-time systems

The following are the three key requirements

1. The timing behavior of the OS must be predictable.
 services of the OS: Upper bound on the execution time!
RTOSs must be deterministic:

 unlike standard Java,

 short times during which interrupts are disabled,

 contiguous files to avoid unpredictable head
movements.

[Takada, 2001]

5

- 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (2) -

2. OS must manage the timing and scheduling

 OS possibly has to be aware of task deadlines;

(unless scheduling is done off-line).

 OS must provide precise time services with high

resolution.

[Takada, 2001]

- 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Real-time operating systems
- Real-time OS (3) -

3. The OS must be fast

Practically important.

[Takada, 2001]

6

- 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

RTOS-Kernels

Distinction between

• real-time kernels and modified kernels of standard OSes.

Distinction between

• general RTOSes and RTOSes for specific domains,

• standard APIs (e.g. POSIX RT-Extension of Unix, ITRON,
OSEK) or proprietary APIs.

- 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Functionality of RTOS-Kernels

Includes

• processor management,

• memory management,

• and timer management;

• task management (resume, wait etc),

• inter-task communication and synchronization.

resource management

7

- 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
1. Fast proprietary kernels

Fast proprietary kernels
For complex systems, these kernels are inadequate,
because they are designed to be fast, rather than to be
predictable in every respect

[R. Gupta, UCI/UCSD]

Examples include

QNX, PDOS, VCOS, VTRX32, VxWORKS.

- 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
2. Real-time extensions to standard OSs

Real-time extensions to standard OSes:
Attempt to exploit comfortable main stream OSes.
RT-kernel running all RT-tasks.
Standard-OS executed as one task.

+ Crash of standard-OS does not affect RT-tasks;
- RT-tasks cannot use Standard-OS services;

less comfortable than expected

8

- 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: RT-Linux

RT-tasks cannot use
standard OS calls.
Commercially available from
fsmlabs (www.fsmlabs.com)

Hardware

RT-Task RT-Task

RT-Linux RT-Scheduler

Linux-Kernel

driver

scheduler

Init Bash Mozilla

interrupts

interrupts

interrupts

I/O

- 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Example: Posix 1.b RT-extensions to Linux

Standard scheduler can be replaced by POSIX scheduler
implementing priorities for RT tasks

Hardware

Linux-Kernel

driver

POSIX 1.b scheduler

Init Bash Mozilla

I/O, interrupts

RT-Task RT-Task

Special RT-calls and
standard OS calls
available.

Easy programming,
no guarantee for
meeting deadline

9

- 17 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Evaluation (Gupta)

According to Gupta, trying to use a version of a standard
OS:

not the correct approach because too many basic and
inappropriate underlying assumptions still exist such as
optimizing for the average case (rather than the worst case),
... ignoring most if not all semantic information, and
independent CPU scheduling and resource allocation.

Dependences between tasks not frequent for most
applications of std. OSs & therefore frequently ignored.

Situation different for ES since dependences between tasks
are quite common.

- 18 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Classes of RTOSes according to R. Gupta
3. Research systems trying to avoid limitations

Research systems trying to avoid limitations.
Include MARS, Spring, MARUTI, Arts, Hartos, DARK, and
Melody
Research issues [Takada, 2001]:
 low overhead memory protection,
 temporal protection of computing resources
 RTOSes for on-chip multiprocessors
 support for continuous media
 quality of service (QoS) control.

Competition between
 traditional vendors (e.g. Wind River Systems) and
 Embedded Windows XP and Windows CEM

ar
ke

t

10

- 19 - P. Marwedel, Univ. Dortmund, Informatik 12, 05/06

Universität DortmundUniversität Dortmund

Summary

 General requirements for embedded operating systems

• Configurability, I/O, interrupts

 General properties of real-time operating systems

• Predictability

• Time services, synchronization

• Classes of RTOSs, device driver embedding

