
EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 10

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 2

Lecture 10: Overview

• Course Administration
– Course evaluation
– Final exam

• Final Technical Report
– Contents and Outline

• Project Review
– Case Study: MP3 Decoder Design
– Discussion

• Embedded Operating Systems
– RTOS requirements, examples

• Embedded Software Synthesis
– Summary and Conclusion

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 2

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 3

Course Administration

• Final Course Evaluation
– 8th through 10th week
– Nov. 15, 2010 through Dec. 5, 2010, 11:45pm
– Closes Sunday night!
– Online via EEE Evaluation application

• Evaluation of Course and Instructor
– Voluntary
– Anonymous
– Very valuable

• Help to improve this class!
– Please spend 5 minutes!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 4

Course Administration

• Final Exam
– Date and time

• Friday, December 10, 2010, 2-4pm

– Location
• Room ET 201

– Format
• Delivery of Final Technical Report

– Option 1: PDF by email to doemer@uci.edu

– Option 2: Hardcopy

• Hard deadline!
– December 10, 2010, 4pm

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 5

Final Technical Report

• Title
– Embedded Software Synthesis of a MP3 Audio Decoder

• Final Technical Report for EECS 222C, Fall 2010

• Author
– Your Name

• Contents
– Describe the overall software synthesis approach

– Outline the major steps in the design flow

– Use the MP3 Decoder as case study
• Tell the story of the project assignments!

– Conclude with a summary of the lessons learned

• Length
– about 10 pages

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 6

Final Technical Report

• Outline
– Title page with Abstract
– Introduction

• Top-down embedded software design flow

– Case Study on a MP3 Decoder
• Application reference code
• System specification model
• Validation and estimation
• Target architecture exploration
• Transaction Level Model (TLM)
• Bus Functional Model (BFM)
• C code generation and cross-compilation
• Instruction Set Simulation (ISS) Model

– Conclusion
• Summary of results, lessons learned

– References

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 4

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 7

Project Review: Embedded Systems

• System embedded into another system
– Constraints from external input (often real-time)

– Application specific (not general purpose)

• Omnipresent in our environment
– In many application domains

– In 2005 [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Pervasive

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com

Source:
Motorola Inc

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 8

Project Review: Motivation

• Design challenges
– Often mobile

• Battery powered (low power)

– Often highly reliable
• Extreme environment (e.g. temperature)

– High performance constraints
• Often real-time requirements

– High complexity
• E.g. Mercedes Benz E-class

– 55 electronic control units

– 5 communication busses

– Tightly coupled
• Software

• Hardware

– Rapid development
for low price…

Source: Daimler

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 5

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 9

Project Review: Complexity Challenge

• Productivity Gap
Hardware design gap

+ Software design gap

= System design gap

HW Design
Productivity
1.6x/18 months

Capability of
Technology
2x/18 months

Software
Productivity
2x/5 years

log

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

Average HW +
SW Productivity

Additional SW
required for HW
2x/10 months

System
Design Gap

HW Design
Gap

time

(source: “Hardware-dependent Software”, Ecker et al., 2009)

Project Review: HW/SW Codesign

• Traditionally, software development follows hardware

• New: Unified, concurrent Design of
– Hardware and

– Software

 Improving Time to Market
– Faster delivery of new products

– Higher probability of on time delivery

 Using a single specification model (System Model)
– New specification model

– New specification language

 Tight integration of
• software development

• hardware development

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 10

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 6

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 11

Project Review: Top-Down Design Flow

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 12

Project Review: SoC Design Flow

System
Model

B0 B1

B2 B3

C1

C2

C3

C
5

C
6

C/C++
Code

V1

func1 (…) {…}

V2 V3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

func6 (…) {…}

• Case Study on a MP3 Decoder:
– Given: Reference source code (mad_C.tar.gz)
– Analyzed: Specification Model (mad_SpecC.tar.gz)
– Final: Platform Model with integrated ISS

Platform Model

M

M

P1 P2

IPIP

M

Source: simh.trailing-
edge.com

System-on-Chip

Specification HW/SW
Codesign

Manufacturing

ANSI-C SpecC

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 7

Project Review: Application Case Study

• Project Application: MP3 Audio Decoder
– Digital compression of audio data reduces

• Communication bandwidth and

• Storage requirements

– MPEG 1 Layer 3 (aka. MP3) compression algorithm
• most commonly used

• uses a variety of clever tricks to compress digital music
– by 90% or more!

• performs lossy compression

• applies perceptual science of psycho acoustic models
– exact input signal does not need to be retained

– human ear can only distinguish a certain amount of detail

– sufficient if output signal sounds identical to the human ears

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 13

[Source: CECS-TR-05-04.pdf]

Project Review: Application Case Study

• Project Application: MP3 Audio Decoder
– MP3 audio bit stream

• organized in frames of bits

• each frame contains 1152 encoded PCM samples

• frame length depends on the bit rate (quality)

• bit rate may vary in variable rate encoded streams

• frame header contains information for the frame detection

– MPEG 1 Layer 3 frame format

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 14

[Source:
CECS-TR-05-04.pdf]

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 8

Project Review: Application Case Study

• Project Application: MP3 Audio Decoder
– MP3 decoder block diagram

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 15

[Source:
CECS-TR-05-04.pdf]

Project Review: Reference Code

• Project Application: MP3 Audio Decoder
– MP3 decoder C reference code

• Underbit Technologies Inc.

• MAD: MPEG Audio Decoder

• http://www.underbit.com/products/mad

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 16

Partial function hierarchy in MP3 reference code

decodeMP3

do_layer3

III_antialias
III_dequant III_hybrid

III_i_stereoIII_synth_1to1

dct64

[Source: P. Chandraiah]

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 9

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 17

Project Review: Assignment 1

• Administration
– Linux Servers

– alpha.eecs.uci.edu (NSF client)

– gamma.eecs.uci.edu (NSF client)

– mu.eecs.uci.edu (NSF host)

• Intel Pentium based PCs

• RedHat Linux (Fedora Core 12)
• Access via secure shell protocol (ssh)

– Accounts
• User ID same as your UCI net ID

• Password as discussed in class

– SpecC Software (© by CECS, UCI)
• SpecC Compiler and Simulator

• System-on-Chip Environment (SCE)

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 18

Project Review: Assignment 1

• Login on Server via SSH
– Account infos will be emailed

• Install MP3 Decoder example
– mkdir eecs222c
– cd eecs222c
– gtar xvzf /home/doemer/EECS222C/mad_C.tar.gz
– cd mad_C
– make clean
– make
– make test

• Become familiar with the application and its structure
– Browse and read the source files
– Draw a block diagram of the major functions

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 10

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 19

Project Review: Assignment 1

• Analyze the given MP3 Decoder application
 Example questions to investigate:

– Example MP3 streams
• Do they play?
• Length in seconds?
• Number of samples?

– Application source code
• How many source files?
• How many lines of code?
• How many functions?

– What are the major functions?
• How do they relate?
• Function call graph?

– What are the most critical functions?
• Where is the most time spent?

– What type of operations are performed?
• Floating point?
• Others?

– Where is any potential for parallel execution?

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 20

• System Level Modeling
– Abstract description of a complete system

– Software + Hardware

• Key Concepts in System Modeling
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Project Review: System Model Concepts

B0 B1

B2 B3

System Model

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 11

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 21

Project Review: Assignment 2

1. Practice the use of SpecC Command Line Tools
– Setup

• source /opt/sce-20100908/bin/setup.csh

– Examine simple examples
• mkdir simple_tests
• cd simple_tests
• cp $SPECC/examples/simple/* .
• ls
• vi HelloWorld.sc

– Practice the compiler
• man scc
• scc HelloWorld –sc2out –vv -ww

– Practice the simulator
• ./HelloWorld

– Practice the tools
• man sir_tree
• scc Adder -sc2sir -o Adder.sir
• sir_tree -bt Adder.sir FA

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 22

Project Review: Assignment 3

1. Setup and simulate a SpecC model of the MP3 Decoder
– Setup and unpack source code

• source /opt/sce-20100908/bin/setup.csh
• tar xvzpf /home/doemer/EECS222C/mad_SpecC.tar.gz
• cd mad_SpecC
• ls

– Compile the SpecC model
• make clean
• make

– Execute the SpecC model
• testbench testStream/spot1.mp3 spot1.pcm
• diff spot1.pcm ../mad_C/spot1.pcm

– Use decoded PCM files from reference C code as “golden” reference
• cp ../mad_C/spot1.pcm reference/
• cp ../mad_C/spot1_3K.pcm reference/
• cp ../mad_C/classic1.pcm reference/

– Simulate the SpecC model (using the provided Makefile)
• make test (or: make test1 to run only the first test)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 12

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 23

Project Review: Assignment 3

2. Analyze the specification model of the MP3 Decoder
– Setup (as in step 2)

• cd mad_SpecC

– Generate a top-level SIR design file
• make
• ls –l testbench.sir

– View some statistics of the model
• sir_stats testbench.sir
• sir_stats -a testbench.sir

– Generate a hierarchy tree of the model
• sir_tree -blt testbench.sir

– Generate a “clean” single-file SpecC model
• scc testbench –sir2sc –vv –sn –sl –psi –o testbench_gen.sc
• Or simply: make testbench_gen.sc
• vi testbench_gen.sc

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 24

Project Review: Assignment 3

3. Is there any parallelism specified in the model?
If so, where?
– Find all behaviors that execute in parallel

– For each parallel behavior, note

• the name of the parent behavior

• the names of the parallel child behaviors

• Deliverables
– Names of concurrent parent behaviors

– Names of parallel executing child behaviors

• Due
– by Friday, Oct 22, 2010, at noon
– by email to doemer@uci.edu

with subject “EECS222C HW3”

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 13

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 25

Project Review: Assignment 4

1. Become familiar with the System-on-Chip Environment (SCE)
– Setup

• Note that we will use the 2003 version of SCE for the tutorial:
• source /opt/sce-20030530/bin/setup.csh
• rm –rf ~/.sce
• mkdir demo
• cd demo
• setup_demo

– Open the SCE Tutorial document
• acroread SCE_Tutorial/sce-tutorial.pdf &
• To protect the environment and save some trees,

please do not print the tutorial document!
It contains 250 pages and you will likely read it only once… ;-)

– Follow the SCE Tutorial instructions
• sce &
• ...

– Cleanup
• When done (or to start over), clean up your demo directory
• cd ..
• rm –rf demo

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 26

Project Review: Assignment 4

2. Setup your MP3 Decoder model in SCE

– Setup SCE
• Note that we will use the 2010 version of SCE for the MP3 decoder:
• source /opt/sce-20100908/bin/setup.csh
• rm –rf ~/.sce
• cd mad_SpecC
• sce &

– Create a new project in SCE
• Project->New
• Project->Settings

– Set include path to “.” (current directory)
– Set libraries to “-xl huffman.o”
– Set both verbosity and warning level to 2
– In the Simulator tab, set the simulation command as follows (single line!):

./%e testStream/spot1_3K.mp3 spot1_3K.pcm &&
diff reference/spot1_3K.pcm spot1_3K.pcm

• Project->SaveAs “mp3.sce”

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 14

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 27

Project Review: Assignment 4

3. Compile and simulate your MP3 Decoder model in SCE

– … (continued from previous page)

– Load your design model into SCE
• File->Import “testbench.sc”
• Project->AddDesign
• Right-click on testbench.sir in the project window, and

Rename the model to Spec

– Compile and simulate your model in SCE
• Validation->Compile
• Validation->Simulate

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 28

Project Review: Assignment 4

4. Analyze your MP3 decoder model in SCE
– … (continued from previous page)

– Browse the structural hierarchy charts
• Select the Main behavior in the behavior browser
• Right-click ->Chart
• Double-click the chart to add a level of hierarchy
• View->Connectivity
• ...

– Print the hierarchy chart for the Synthesis Filter
• Select the synth behavior in the behavior browser
• Right-click ->Chart
• Add several levels of hierarchy
• Window->Print… in color (!) to file “synth.ps”
• ps2pdf synth.ps

• Deliverable
– Hierarchy chart “synth.pdf” (in color!)
– by Friday, Oct 29, 2010, at noon
– by email to doemer@uci.edu with subject “EECS222C HW4”

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 15

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 29

Project Review: Assignment 5

1. Profile your MP3 Decoder model in SCE

– (continued from previous assignment)

– Load your MP3 project in SCE
• Project->Load “mp3.sce”

– Load your design model into SCE
• File->Import “testbench.sc”
• Project->AddDesign
• Right-click on testbench.sir in the project window, and

Rename the model to Spec

– Compile and simulate your model in SCE
• Validation->Compile
• Validation->Simulate

– Profile your MP3 decoder in SCE
• Validation->Profile

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 30

Project Review: Assignment 5

2. Analyze your Profiling Results

– Use the graphical bar charts to compare the complexity
of the behaviors in your MP3 decoder

• In the hierarchy browser, select behaviors of interest
(use CTRL-LeftClick to select/deselect)

• RightClick->Graphs->Computation

– Determine the most-critical behaviors
that contribute the most computation operations

• The goal is to find those behavioral blocks
that make good choices for hardware accelleration

– Deliverable 1:
• Bar chart showing

the selected behaviors
in comparison to others
– CriticalBlocks.pdf

• Text file briefly (!)
explaining your choice
– CriticalBlocks.txt

Example Computation Profile
(block names omitted)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 16

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 31

Project Review: Assignment 5

3. Evaluate potential Processors for SW-only Implementation

– Select DUT as Mad_decoder decoder
• RightClick on decoder ->SetAsTop-Level

– Consider an ARM7TDMI processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, ARM_7TDMI
• Choose default port configuration (i.e. 20000ps)
• Choose 50 MHz (change it from default 100MHz)
• Name the processor ARM7TDMI

– Map the entire decoder on to the ARM7TDMI processor
• Validation->Evaluate
• Validation->Show Estimates

– Determine the estimated execution time on the ARM7TDMI!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 32

Project Review: Assignment 5

4. Evaluate alternative Processors for SW-only Implementation

– Consider as alternative a LEON3 processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, LEON3
• Choose default port configuration (i.e. 20000ps)
• Choose default clock frequency (i.e. 50 MHz)
• Name the processor LEON3

– Map the entire decoder on to the LEON3 processor
• Validation->Evaluate

– Determine the estimated execution time on the LEON3!

– Deliverable 2:
• Text file with the estimated execution times for the ARM7TDMI and

LEON3 processors, and
• Brief analysis whether or not each processor is expected fast enough

for a SW-only implementation of the MP3 decoder
– SWonly.txt

– Due:
• by Friday, Nov 5, 2010, at noon (email to doemer@uci.edu, “EECS222C HW5”)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 17

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 33

Project Review: Discussion

1. Bar chart showing the most-critical behaviors
in terms of computation operations
– Find blocks suitable for HW accelleration!

• CriticalBlocks.pdf

• CriticalBlocks.txt
– Starting from the decoder DUT, traverse down the hierarchy to find

behaviors with most significant computation…
– decode_frame/layer_III/decode/granule/channels

» left/imdct
» right/imdct

– synth/synth_full/synth_channel{01}/filtercore
» dct32
» calc_sample

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 34

Project Review: Discussion

2. Evaluate potential Processors for SW-only Implementation
– Deliverable 2:

• Estimated execution times for the ARM7TDMI and LEON3 processors
• Brief analysis whether or not each processor is expected fast enough

– SWonly.txt

– Candidate 1: ARM7TDMI processor at 50 MHz
• Profiler-estimated execution time: 206.0 ms

– Candidate 2: LEON3 processor at 50 MHz
• Profiler-estimated execution time: 733.3 ms

– Is this fast enough?
• Length of test stream spot1_3k.pcm:

36864 bytes = 8 frames * 1152 samples * 2 channels * 2 bytes per sample
• Monitor source code mp3monitor.sc:

44.1 kHz stereo stream (at 2 bytes per sample)
• Timing constraints:

Per frame: 1152 / 44.1 kHz = 26.12 ms
For entire test stream: 8*1152 / 44.1 kHz = 208.98 ms

 ARM7TDMI processor barely meets the timing constraint
 LEON3 processor misses the timing constraints (by more than 2x)

 Hardware accelleration becomes necessary!

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 18

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 35

Project Review: Assignment 6

1. Refinement of the MP3 Decoder model in SCE
– Continue from “Spec” model of previous assignment
– Select an appropriate system architecture

• 1 ARM_7TDMI or LEON3 CPU at 50 MHz
• 0-6 HW_Standard accellerators at 100 MHz

– Perform the following refinement steps
• Architecture Refinement
• Scheduling Refinement
• Network Refinement
• Communication Link Refinement

– Transaction-level model (TLM)
– Pin-accurate model (PAM)

• Reference instructions:
– /home/doemer/EECS222C/Assignment6.txt

– Deliverable:
• Text file “refinement.txt” with

– short description of the chosen target architecture
– simulated execution times of each model

– Due:
• by Friday, Nov 12, 2010, at noon
• by email to doemer@uci.edu, with subject “EECS222C HW6”

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 36

Project Review: Assignment 7

1. SW Synthesis and ISS Integration of the MP3 Decoder in SCE

– Continue from “TLM” and “PAM” models of previous assignment

– Perform C code generation
• Software Synthesis Refinement, C code generation

– Perform Instruction Set Simulation
• Software Synthesis Refinement, ISS integration

– Reference instructions:
• /home/doemer/EECS222C/Assignment7.txt

– Deliverable:
• Text file “SWgen.txt” with

– short (!) description of “your story”
– execution time of your ISS model

– Due:
• by Friday, Nov 19, 2010, at noon
• by email to doemer@uci.edu, with subject “EECS222C HW7”

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 19

Project Review: Problem Solving…

1. Communication models are very slow
– Symptom:

• Simulation shows that delay per frame increases drastically
in TLM and PAM models

– Analysis:
• Communication time is not taken into account before

• TLM and PAM include accurate communication delay

• Communication can be a bottleneck for certain architectures
– Congestion due to single communication bus

– Indirect communication from slave to slave via master

– Potential Solutions:
• Analyze bus traffic by viewing connectivity in Network model

• Introduce a separate bus between hardware components
– See Lecture7-ASPDAC07-AG-MP3.pdf

• Increase bus frequency

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 37

Project Review: Problem Solving…

2. Error message when simulating ISS model
– Symptom:

• Simulation of ISS model reports errors such as
Core: Shifter distance more than 31, i.e. 226

– Analysis:
• Error message originates from ISS implementation

• The same (or similar) message shows for other successful examples

– Solution:
• Probably a shift-instruction with argument out of range

without serious other effects

• Simply ignore the message!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 38

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 20

Project Review: Problem Solving…

3. Priority conflicts in ISS model
– Symptom:

• Simulation of ISS model reports errors such as
TaskCreate Failed prio 2 already exists!

– Analysis:
• We have been selecting Round-robin scheduling (all priorities 1)

or Priority scheduling (with non-exclusive priorities)

• The ISS model uses micro-C-OS-2 as RTOS
which requires fixed non-exclusive priorities

– Attempted Solutions:
• Isolate all parallel behaviors so that unique priorities can be assigned

• Select Priority-based scheduling with different priorities

 Error messages persist…

 Suspect a bug in the RTOS port that prevents clean task deletion…

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 39

Project Review: Problem Solving…

4. Persistent priority conflicts in ISS model
– Symptom:

• Simulation of ISS model reports errors such as
TaskCreate Failed prio 2 already exists!

– Analysis:
• We have been selecting Round-robin scheduling (all priorities 1)

or Priority scheduling (with non-exclusive priorities)

• The ISS model uses micro-C-OS-2 as RTOS
which requires fixed non-exclusive priorities

– Successful Solution:
• Revert to static scheduling!

• In Scheduling refinement, select static scheduling and serialize the
entire tree of behaviors mapped to the CPU

 Error messages are gone!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 40

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 21

Project Review: Problem Solving…

5. Large frame delay in ISS model
– Symptom:

• Simulation of TLM/PAM models estimated frame delays such as
Decode time per frame = 20.010 ms

• Simulation of ISS model reports frame delays such as
Decode time per frame = 65.979 ms

– Analysis:
• TLM/PAM computation time is only estimated (by SCE profiler)

• Profiling produces only fidelity (not absolute accuracy!)

• Profiler for ARM7 is based on overly optimistic operation cycles
– Assumes zero cache-misses, pipeline stalls, etc.

– Possible Solutions:
• Trust the ISS, not the profiler!

 Increase CPU frequency, and/or improve system architecture!

Consider a different CPU, e.g. LEON3

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 41

Project Review: Problem Solving…

6. Incorrect output file in ISS model
– Symptom:

• Decoded stream by ISS model fails comparison with reference stream
Binary files reference/spot1_3K.pcm
and spot1_3K.pcm differ

– Analysis:
• Linux diff reports file difference

• Linux ls –l shows difference in number of bytes

• Linux vi –d shows that only the end of the file differs

– Solution:
• Decoding by ISS model was correct, it just didn’t finish!

 Extend simulation time before stimulus behavior exits, or

 Find a faster architecture, then decoded file will be complete!

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 42

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 22

Project Review: Problem Solving…

7. Incorrect timing of the ISS model
– Symptom:

• ISS model timing is incorrect during simulation
Decode time per frame = 65.979 ms

– Analysis:
• ARM7 ISS model assumes 100MHz clock speed for the CPU

regardless of what was selected during PE allocation

• We need to patch the timing delay in the ISS model

– Solution:
• scc MyISS -sir2sc -sl -psi -o MyISS_patched.sc

• vi MyISS_patched.sc
– Search for function call cyclebycycle()

– Adjust waitfor(result * 10000ull);

• scc MyISS_patched -xcx -xlx -vv -w -xl huffman.o

• ./MyISS_patched testStream/spot1_3K.mp3 spot1_3K.pcm

• diff -s reference/spot1_3K.pcm spot1_3K.pcm

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 43

Project Review: Problem Solving…

8. Slow default bus frequency of the AMBA AHB
– Symptom:

• The AMBA AHB connected to the CPU is set to 50MHz by default
20000ns (50MHz)

– Analysis:
• Higher clock frequency of the CPU justifies also higher bus speed

• SCE fixes the bus parameters already at the time of PE Allocation
(i.e. in the dialog before Architecture Refinement)

– Solution:
• We need to overwrite the default value when allocating the CPU

• Thus, to change the CPU bus frequency
we need to go back to the Specification model and
set the bus speed at same time when the CPU is allocated

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 44

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 23

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 45

Embedded Operating Systems

• Chapter 4, part 4, of
“Embedded System Design”
by P. Marwedel (Univ. of Dortmund, Germany),
Kluwer Academic Publishers, 2003.

• Embedded Operating Systems
– General requirements

– Real-time Operating Systems (RTOS)

– Lecture10-es-marw-4d-rtos.ppt

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 46

Embedded Operating Systems

• Example: MicroC/OS-II

– Ported in SCE for use with ARM_7TDMI CPU

– Features
• multi-tasking real-time kernel

• real-time support (most kernel functions deterministic)

• task management

• priority scheduling

• preemption

• ROM’able (executable from firmware)
– memory footprint about 20 KB

• portable (to over 40 different CPU architectures, 8-64bit)
– about 5500 lines of ANSI-C source code

– only small amount of processor-specific assembly code

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 24

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 47

Embedded Operating Systems

• Example:
MicroC/OS-II
– Software

Structure

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 48

Embedded Operating Systems

• Example: MicroC/OS-II

– Kernel Services
• Task management

– up to 56 application tasks

– priority-based scheduling

• Time management
– system timer interrupt (10ms – 100ms)

– 32-bit tick counter

• Semaphore management
– inter-task communication through shared memory

– semaphore API

• Mutex management
– binary semaphore

• Memory management
– dynamic memory allocation (with fixed block size)

EECS222C: SoC Software Synthesis Lecture 10

(c) 2010 R. Doemer 25

EECS222C: SoC Software Synthesis, Lecture 10 (c) 2010 R. Doemer 49

Summary and Conclusion

• Embedded Software Synthesis
– C/C++ Reference Code
– SLDL Modeling

• System specification in SpecC

– Estimation and Exploration
• Find a suitable target platform

– Scheduling and RTOS selection
• Static vs. dynamic scheduling

– Target Code Generation
• ANSI-C code generation for cross-compilation

– Instruction Set Simulation (ISS)
• Simulation of execution on the target processor

– Pin- and cycle-accurate

