
1

Embedded Operating Systems,
Middleware, and Scheduling

Peter Marwedel
Informatik 12

Univ. Dortmund
Germany

2006/12/05

Selected Slides
of Chapter 4, part 1

- 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Simplified design flow
for embedded systems

2

- 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Reuse of standard software components

Knowledge from previous designs to be
made available in the form of intellectual
property (IP, for SW & HW).

 Operating systems

 Middleware

 Real-time data bases

 Standard software (MPEG-x, GSM-kernel, …)

Includes standard approaches for scheduling

(requires knowledge about execution times).

- 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Worst/best case execution times (1)

Def.: The worst case execution time (WCET) is an upper
bound on the execution times of tasks.
The term is not ideal, since a program requiring the WCET for
its execution does not have to exist (WCET is a bound).

Def.: The best case execution time (BCET) is a lower
bound on the execution times of tasks.
The term is not ideal, since a program running at the BCET for
its execution does not have to exist (BCET is a bound).

3

- 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Worst/best case execution times (2)

t

Feasible execution times

Other authors

Feasible
execution

times

D
ef

in
iti

on
 u

se
d

in
 th

is
 c

ou
rs

e

- 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Worst case execution times (2)

Complexity:
 in the general case: undecidable if a bound exists.
 for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines, caches,
interrupts, virtual memory, etc.

Approaches:
 for hardware: requires detailed timing behavior
 for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de)

Presentation by R. Wilhelm @ FEST (DVD in
German), starting at min. 31:35 min.

4

- 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Average execution times

 Estimated cost and performance values:
Difficult to generate sufficiently precise
estimates;
Balance between run-time and precision

 Accurate cost and performance values:
Can be done with normal tools
(such as compilers).
As precise as the input data is.

π x

- 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Real-time scheduling (1)

Assume that we are given a task graph G=(V,E).

Def.: A schedule s of G is a mapping
V  T

of a set of tasks V to start times from domain T.

V1 V2 V4V3

t

G=(V,E)

T

s

5

- 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Real-time scheduling (2)

Typically, schedules have to respect a number
of constraints, incl. resource constraints,
dependency constraints, deadlines.

Scheduling = finding such a mapping.

Scheduling to be performed several times
during ES design (early rough scheduling as
well as late precise scheduling).

- 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Classification of scheduling algorithms

6

- 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Hard and soft deadlines

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.

We will focus on hard deadlines.

- 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Periodic and aperiodic tasks

Def.: Tasks which must be executed once every p units of
time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

7

- 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Preemptive and non-preemptive scheduling

 Non-preemptive schedulers:

Tasks are executed until they are done.

Response time for external events may be quite long.

 Preemptive schedulers: To be used if
- some tasks have long execution times or
- if the response time for external events to be short.

- 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Dynamic/online scheduling

 Dynamic/online scheduling:
Processor allocation decisions
(scheduling) at run-time; based on the
information about the tasks arrived so
far.

8

- 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Static/offline scheduling

 Static/offline scheduling:
Scheduling taking a priori knowledge about arrival
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by
timer. Timer controlled by a table generated at
design time.

- 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Time-triggered systems (1)

In an entirely time-triggered system, the temporal control
structure of all tasks is established a priori by off-line support-
tools. This temporal control structure is encoded in a Task-
Descriptor List (TDL) that contains the cyclic schedule for all
activities of the node. This schedule considers the required
precedence and mutual exclusion relationships among the
tasks such that an explicit coordination of the tasks by the
operating system at run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It
looks at the TDL, and then performs the action that has been
planned for this instant [Kopetz].

9

- 17 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Time-triggered systems (2)

… pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may
be poor.

- 18 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Centralized and distributed scheduling

Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several
processors.

Mono- and multi-processor scheduling:
- Simple scheduling algorithms handle single processors,
- more complex algorithms handle multiple processors.

• algorithms for homogeneous multi-processor systems
• algorithms for heterogeneous multi-processor

systems (includes HW accelerators as special case).

10

- 19 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

necessary

Schedulability

Set of tasks is schedulable under a set of
constraints, if a schedule exists for that set
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for
schedule checked. (Hopefully) small
probability of indicating that no schedule
exists even though one exists.

Necessary tests: checking necessary
conditions. Used to show no schedule
exists. There may be cases in which no
schedule exists & we cannot prove it.

schedulable
sufficient

- 20 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Cost functions

Cost function: Different algorithms aim at minimizing
different functions.

Def.: Maximum lateness =
maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

t

T1

T2

