
1

Embedded Operating Systems,
Middleware, and Scheduling

Peter Marwedel
Informatik 12

Univ. Dortmund
Germany

2006/12/05

Selected Slides
of Chapter 4, part 2

- 2 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Classification of scheduling algorithms



2

- 3 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Aperiodic scheduling
- Scheduling with no precedence constraints -

Let {Ti } be a set of tasks. Let:

• ci be the execution time of Ti ,

• di be the deadline interval, that is,
the time between Ti becoming available
and the time until which Ti has to finish execution.

• ℓi be the laxity or slack, defined as ℓi = di - ci 

• fi be the finishing time.

ℓi

- 4 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due 
date (deadline) first.

EDD requires all tasks to be sorted by their (absolute) 
deadlines. Hence, its complexity is O(n log(n)). 

fifi fi



3

- 5 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Horn’s Theorem -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with 
arbitrary arrival times, any algorithm that at any instant executes 
the task with the earliest absolute deadline among all the ready 
tasks is optimal with respect to minimizing the maximum 
lateness.

- 6 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Algorithm -

Earliest deadline first (EDF) algorithm:
Each time a new ready task arrives:
 It is inserted into a queue of ready tasks, sorted by their 

absolute deadlines. Task at head of queue is executed.
 If a newly arrived task is inserted at the head of the 

queue, the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with 
existing tasks for each arriving task) requires run-time O(n2); 
(less with binary search or bucket arrays). 

Sorted queue

Executing task



4

- 7 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Earliest Deadline First (EDF)
- Example -

Later deadline
 no preemption

Earlier deadline
 preemption

- 8 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity (the less laxity, the 
higher the priority); dynamically changing priority; preemptive.



5

- 9 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Properties

 Not sufficient to call scheduler & re-compute laxity just at 
task arrival times.

 Overhead for calls of the scheduler.
 Many context switches.
 Detects missed deadlines early.
 LL is also an optimal scheduling for mono-processor 

systems.
 Dynamic priorities  cannot be used with a fixed prio OS.
 LL scheduling requires the knowledge of the execution 

time. 

- 10 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may 
have to leave the processor idle at certain times.

Proof: Suppose: optimal schedulers never leave processor 
idle.



6

- 11 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Scheduling without preemption (2)

T1: periodic, c1 = 2, p1 = 4, d1 = 4

T2: occasionally available at times 4*n+1, c2= 1, d2= 1

T1 has to start at t=0

 deadline missed, but schedule is possible (start T2 first)

 scheduler is not optimal  contradiction! q.e.d.

- 12 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Scheduling without preemption

Preemption not allowed:  optimal schedules may leave 
processor idle to finish tasks with early deadlines arriving late.

Knowledge about the future is needed for optimal
scheduling algorithms

No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping 
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem 
becomes NP-hard in general. B&B typically used.



7

- 13 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Scheduling with precedence constraints

Task graph and possible schedule:

Schedule can be stored in table.

- 14 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

LDF [Lawler, 1973]: reads the task graph and among the tasks 
with no successors inserts the one with the latest deadline into 
a queue. It then repeats this process, putting tasks whose 
successor have all been selected into the queue.
At run-time, the tasks are executed in the generated total order.
LDF is non-preemptive and is optimal for mono-processors.

If no local deadlines exist, LDF performs just a topological sort.



8

- 15 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Asynchronous Arrival Times:
Modified EDF Algorithm

This case can be handled with a modified EDF algorithm.
The key idea is to transform the problem from a given set of 
dependent tasks into a set of independent tasks with different 
timing parameters [Chetto90].

This algorithm is optimal for mono-processor systems.

If preemption is not allowed, the heuristic algorithm 
developed by Stankovic and Ramamritham can be used.

- 16 - P. Marwedel, Univ. Dortmund, Informatik 12, 2006/7

Universität DortmundUniversität Dortmund

Summary

Worst case execution times (WCET)
Definition of scheduling terms

Hard vs. soft deadlines
Static vs. dynamic TT-OS
Schedulability

Scheduling approaches
– Aperiodic tasks

• No precedences
– Simultaneous (EDD) 

& Asynchronous Arrival Times (EDF, LL)
• Precedences

– Simultaneous Arrival Times ( LDF)
– Asynchronous Arrival Times ( mEDF)


