
EECS222C: SoC Software Synthesis Lecture 6

(c) 2010 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 6

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 2

Lecture 6: Overview

• Assignment 4
– Discussion

• Assignment 5

• Embedded Software
– Scheduling algorithms

• Aperiodic scheduling



EECS222C: SoC Software Synthesis Lecture 6

(c) 2010 R. Doemer 2

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 3

Assignment 4

1. Become familiar with the System-on-Chip Environment (SCE)
– Setup

• Note that we will use the 2003 version of SCE for the tutorial:
• source /opt/sce-20030530/bin/setup.csh
• rm –rf ~/.sce
• mkdir demo
• cd demo
• setup_demo

– Open the SCE Tutorial document
• acroread SCE_Tutorial/sce-tutorial.pdf &
• To protect the environment and save some trees,

please do not print the tutorial document!
It contains 250 pages and you will likely read it only once… ;-)

– Follow the SCE Tutorial instructions
• sce &
• ...

– Cleanup
• When done (or to start over), clean up your demo directory
• cd ..
• rm –rf demo

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 4

Assignment 4

2. Setup your MP3 Decoder model in SCE

– Setup SCE
• Note that we will use the 2010 version of SCE for the MP3 decoder:
• source /opt/sce-20100908/bin/setup.csh
• rm –rf ~/.sce
• cd mad_SpecC
• sce &

– Create a new project in SCE
• Project->New
• Project->Settings

– Set include path to “.” (current directory)
– Set libraries to “-xl huffman.o”
– Set both verbosity and warning level to 2
– In the Simulator tab, set the simulation command as follows (single line!):

./%e testStream/spot1_3K.mp3 spot1_3K.pcm &&
diff reference/spot1_3K.pcm spot1_3K.pcm

• Project->SaveAs “mp3.sce”



EECS222C: SoC Software Synthesis Lecture 6

(c) 2010 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 5

Assignment 4

3. Compile and simulate your MP3 Decoder model in SCE

– … (continued from previous page)

– Load your design model into SCE
• File->Import “testbench.sc”
• Project->AddDesign
• Right-click on testbench.sir in the project window, and

Rename the model to Spec

– Compile and simulate your model in SCE
• Validation->Compile
• Validation->Simulate

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 6

Assignment 4

4. Analyze your MP3 decoder model in SCE
– … (continued from previous page)

– Browse the structural hierarchy charts
• Select the Main behavior in the behavior browser
• Right-click ->Chart
• Double-click the chart to add a level of hierarchy
• View->Connectivity
• ...

– Print the hierarchy chart for the Synthesis Filter
• Select the synth behavior in the behavior browser
• Right-click ->Chart
• Add several levels of hierarchy
• Window->Print… in color (!) to file “synth.ps”
• ps2pdf synth.ps

• Deliverable
– Hierarchy chart “synth.pdf” (in color!)
– by Friday, Oct 29, 2010, at noon
– by email to doemer@uci.edu with subject “EECS222C HW4”



EECS222C: SoC Software Synthesis Lecture 6

(c) 2010 R. Doemer 4

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 7

Assignment 5

1. Profile your MP3 Decoder model in SCE

– (continued from previous assignment)

– Load your MP3 project in SCE
• Project->Load “mp3.sce”

– Load your design model into SCE
• File->Import “testbench.sc”
• Project->AddDesign
• Right-click on testbench.sir in the project window, and

Rename the model to Spec

– Compile and simulate your model in SCE
• Validation->Compile
• Validation->Simulate

– Profile your MP3 decoder in SCE
• Validation->Profile

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 8

Assignment 5

2. Analyze your Profiling Results

– Use the graphical bar charts to compare the complexity
of the behaviors in your MP3 decoder

• In the hierarchy browser, select behaviors of interest
(use CTRL-LeftClick to select/deselect)

• RightClick->Graphs->Computation

– Determine the most-critical behaviors
that contribute the most computation operations

• The goal is to find those behavioral blocks
that make good choices for hardware accelleration

– Deliverable 1:
• Bar chart showing

the selected behaviors
in comparison to others
– CriticalBlocks.pdf

• Text file briefly (!)
explaining your choice
– CriticalBlocks.txt

Example Computation Profile
(block names omitted)



EECS222C: SoC Software Synthesis Lecture 6

(c) 2010 R. Doemer 5

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 9

Assignment 5

3. Evaluate potential Processors for SW-only Implementation

– Select DUT as Mad_decoder decoder
• RightClick on decoder ->SetAsTop-Level

– Consider an ARM7TDMI processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, ARM_7TDMI
• Choose default port configuration (i.e. 20000ps)
• Choose 50 MHz (change it from default 100MHz)
• Name the processor ARM7TDMI

– Map the entire decoder on to the ARM7TDMI processor
• Validation->Evaluate
• Validation->Show Estimates

– Determine the estimated execution time on the ARM7TDMI!

EECS222C: SoC Software Synthesis, Lecture 6 (c) 2010 R. Doemer 10

Assignment 5

4. Evaluate alternative Processors for SW-only Implementation

– Consider as alternative a LEON3 processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, LEON3
• Choose default port configuration (i.e. 20000ps)
• Choose default clock frequency (i.e. 50 MHz)
• Name the processor LEON3

– Map the entire decoder on to the LEON3 processor
• Validation->Evaluate

– Determine the estimated execution time on the LEON3!

– Deliverable 2:
• Text file with the estimated execution times for the ARM7TDMI and 

LEON3 processors, and
• Brief analysis whether or not each processor is expected fast enough

for a SW-only implementation of the MP3 decoder
– SWonly.txt

– Due:
• by Friday, Nov 5, 2010, at noon (email to doemer@uci.edu, “EECS222C HW5”)



EECS222C: SoC Software Synthesis Lecture 6

(c) 2010 R. Doemer 6

EECS222C: SoC Software Synthesis, Lecture 5 (c) 2008 R. Doemer 11

Embedded Software

• Chapter 4, part 2, of
“Embedded System Design”
by P. Marwedel (Univ. of Dortmund, Germany),
Kluwer Academic Publishers, 2003.

– Scheduling Algorithms

– Aperiodic Scheduling

Lecture6-es-marw-4b-aperiodic.ppt


