
EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 7

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 2

Lecture 7: Overview

• Assignment 5
– Discussion

• Refinement-based System Design Flow

• Example Design Study

• Assignment 6

EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 2

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 3

Assignment 5

1. Profile your MP3 Decoder model in SCE

– (continued from previous assignment)

– Load your MP3 project in SCE
• Project->Load “mp3.sce”

– Load your design model into SCE
• File->Import “testbench.sc”
• Project->AddDesign
• Right-click on testbench.sir in the project window, and

Rename the model to Spec

– Compile and simulate your model in SCE
• Validation->Compile
• Validation->Simulate

– Profile your MP3 decoder in SCE
• Validation->Profile

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 4

Assignment 5

2. Analyze your Profiling Results

– Use the graphical bar charts to compare the complexity
of the behaviors in your MP3 decoder

• In the hierarchy browser, select behaviors of interest
(use CTRL-LeftClick to select/deselect)

• RightClick->Graphs->Computation

– Determine the most-critical behaviors
that contribute the most computation operations

• The goal is to find those behavioral blocks
that make good choices for hardware accelleration

– Deliverable 1:
• Bar chart showing

the selected behaviors
in comparison to others

– CriticalBlocks.pdf
• Text file briefly (!)

explaining your choice
– CriticalBlocks.txt

Example Computation Profile
(block names omitted)

EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 3

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 5

Assignment 5

3. Evaluate potential Processors for SW-only Implementation

– Select DUT as Mad_decoder decoder
• RightClick on decoder ->SetAsTop-Level

– Consider an ARM7TDMI processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, ARM_7TDMI
• Choose default port configuration (i.e. 20000ps)
• Choose 50 MHz (change it from default 100MHz)
• Name the processor ARM7TDMI

– Map the entire decoder on to the ARM7TDMI processor
• Validation->Evaluate
• Validation->Show Estimates

– Determine the estimated execution time on the ARM7TDMI!

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 6

Assignment 5

4. Evaluate alternative Processors for SW-only Implementation

– Consider as alternative a LEON3 processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, LEON3
• Choose default port configuration (i.e. 20000ps)
• Choose default clock frequency (i.e. 50 MHz)
• Name the processor LEON3

– Map the entire decoder on to the LEON3 processor
• Validation->Evaluate

– Determine the estimated execution time on the LEON3!

– Deliverable 2:
• Text file with the estimated execution times for the ARM7TDMI and

LEON3 processors, and
• Brief analysis whether or not each processor is expected fast enough

for a SW-only implementation of the MP3 decoder
– SWonly.txt

– Due:
• by Friday, Nov 5, 2010, at noon (email to doemer@uci.edu, “EECS222C HW5”)

EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 4

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 7

Assignment 5: Discussion

1. Bar chart showing the most-critical behaviors
in terms of computation operations
– Find blocks suitable for HW accelleration!

• CriticalBlocks.pdf

• CriticalBlocks.txt
– Starting from the decoder DUT, traverse down the hierarchy to find

behaviors with most significant computation…
– decode_frame/layer_III/decode/granule/channels

» left/imdct
» right/imdct

– synth/synth_full/synth_channel{01}/filtercore
» dct32
» calc_sample

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 8

Assignment 5: Discussion

2. Evaluate potential Processors for SW-only Implementation
– Deliverable 2:

• Estimated execution times for the ARM7TDMI and LEON3 processors
• Brief analysis whether or not each processor is expected fast enough

– SWonly.txt

– Candidate 1: ARM7TDMI processor at 50 MHz
• Profiler-estimated execution time: 206.0 ms

– Candidate 2: LEON3 processor at 50 MHz
• Profiler-estimated execution time: 733.3 ms

– Is this fast enough?
• Length of test stream spot1_3k.pcm:

36864 bytes = 8 frames * 1152 samples * 2 channels * 2 bytes per sample
• Monitor source code mp3monitor.sc:

44.1 kHz stereo stream (at 2 bytes per sample)
• Timing constraints:

Per frame: 1152 / 44.1 kHz = 26.12 ms
For entire test stream: 8*1152 / 44.1 kHz = 208.98 ms

 ARM7TDMI processor barely meets the timing constraint
 LEON3 processor misses the timing constraints (by more than 2x)

 Hardware accelleration becomes necessary!

EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 5

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 9

Refinement-based System Design Flow

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication refinement

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture refinement

Capture

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 10

Refinement-based System Design Flow

• Step 1: Architecture Refinement
– Allocation of Processing Elements (PE)

• Type and number of processors

• Type and number of custom hardware blocks

• Type and number of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE

• Map each variable to a PE

– Result:
System architecture of concurrent PEs
with abstract communication in channels

EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 6

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 11

Refinement-based System Design Flow

• Step 2: Scheduling Refinement
– For each PE, serialize the execution of behaviors

to a single thread of control
– Option (a): Static scheduling

• For each set of concurrent behaviors,
determine fixed order of execution

– Option (b): Dynamic scheduling by RTOS
• Choose scheduling policy,

i.e. Round-robin or priority-based
• For each set of concurrent behaviors,

determine scheduling priority

– Result:
System model with abstract RTOS scheduler
inserted in each PE

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 12

Refinement-based System Design Flow

• Step 3: Communication Refinement
– Allocation of system busses

• Type and number of system busses

• Type of bus protocol for each bus (if applicable)

• Number of transducers (if applicable)

• System connectivity

– Mapping of channels to busses
• Map each communication channel to a system bus

(or multiple busses, if applicable)

– Result:
Bus-functional model of the system

EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 7

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 13

Refinement-based System Design Flow

• Step 4: Hardware Refinement (for HW PE)
– Allocation of Register Transfer Level (RTL) components

• Type and number of functional units (e.g. adder, multiplier, ALU)
• Type and number of storage units (e.g. registers, register files)
• Type and number of interconnecting busses (drivers, multiplexers)

– Scheduling
• Basic blocks assigned to super-states
• Individual operations assigned to states (clock cycles)

– Binding
• Bind functional operations to functional units
• Bind variables to storage units
• Bind assignments/transfers to busses

– Result:
Clock-cycle accurate model of each HW PE

– Output: Synthesizable Verilog description

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 14

Refinement-based System Design Flow

• Step 5: Software Refinement (for SW PE)
– C code generation

• For selected target processor

– RTOS targeting
• For selected target RTOS

– Compilation to Instruction Set Architecture
• for Instruction Set Simulation (ISS)

– Assembly

– Result:
Clock-cycle accurate model of each SW PE

– Output: downloadable binary image

EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 8

Example Design Study

• Design of a MP3 Decoder
– Floating-point algorithm

• Somewhat different from ours

• Still very appropriate to compare

• Design Study
– Tutorial on Embedded System Design

• Topic: System-level Modeling

• Speaker: Andreas Gerstlauer, CECS

• Conference: ASP-DAC 2007, Yokohama, Japan

• Lecture7-ASPDAC07-AG-MP3.pdf

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 15

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 16

Assignment 6

1. Refinement of the MP3 Decoder model in SCE
– Continue from “Spec” model of previous assignment
– Select an appropriate system architecture

• 1 ARM_7TDMI or LEON3 CPU at 50 MHz
• 0-6 HW_Standard accellerators at 100 MHz

– Perform the following refinement steps
• Architecture Refinement
• Scheduling Refinement
• Network Refinement
• Communication Link Refinement

– Transaction-level model (TLM)
– Pin-accurate model (PAM)

• Reference instructions:
– /home/doemer/EECS222C/Assignment6.txt

– Deliverable:
• Text file “refinement.txt” with

– short description of the chosen target architecture
– simulated execution times of each model

– Due:
• by Friday, Nov 12, 2010, at noon
• by email to doemer@uci.edu, with subject “EECS222C HW6”

