
EECS222C: SoC Software Synthesis Lecture 7

(c) 2010 R. Doemer 1

EECS 222C:
System-on-Chip Software Synthesis

Lecture 7

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 2

Lecture 7: Overview

• Assignment 5
– Discussion

• Refinement-based System Design Flow

• Example Design Study

• Assignment 6
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Assignment 5

1. Profile your MP3 Decoder model in SCE

– (continued from previous assignment)

– Load your MP3 project in SCE
• Project->Load “mp3.sce”

– Load your design model into SCE
• File->Import “testbench.sc”
• Project->AddDesign
• Right-click on testbench.sir in the project window, and

Rename the model to Spec

– Compile and simulate your model in SCE
• Validation->Compile
• Validation->Simulate

– Profile your MP3 decoder in SCE
• Validation->Profile
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Assignment 5

2. Analyze your Profiling Results

– Use the graphical bar charts to compare the complexity
of the behaviors in your MP3 decoder

• In the hierarchy browser, select behaviors of interest
(use CTRL-LeftClick to select/deselect)

• RightClick->Graphs->Computation

– Determine the most-critical behaviors
that contribute the most computation operations

• The goal is to find those behavioral blocks
that make good choices for hardware accelleration

– Deliverable 1:
• Bar chart showing

the selected behaviors
in comparison to others

– CriticalBlocks.pdf
• Text file briefly (!)

explaining your choice
– CriticalBlocks.txt

Example Computation Profile
(block names omitted)
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Assignment 5

3. Evaluate potential Processors for SW-only Implementation

– Select DUT as Mad_decoder decoder
• RightClick on decoder ->SetAsTop-Level

– Consider an ARM7TDMI processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, ARM_7TDMI
• Choose default port configuration (i.e. 20000ps)
• Choose 50 MHz (change it from default 100MHz)
• Name the processor ARM7TDMI

– Map the entire decoder on to the ARM7TDMI processor
• Validation->Evaluate
• Validation->Show Estimates

– Determine the estimated execution time on the ARM7TDMI!
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Assignment 5

4. Evaluate alternative Processors for SW-only Implementation

– Consider as alternative a LEON3 processor (50MHz)
• Synthesis->Allocate PEs…
• Add Processors, LEON3
• Choose default port configuration (i.e. 20000ps)
• Choose default clock frequency (i.e. 50 MHz)
• Name the processor LEON3

– Map the entire decoder on to the LEON3 processor
• Validation->Evaluate

– Determine the estimated execution time on the LEON3!

– Deliverable 2:
• Text file with the estimated execution times for the ARM7TDMI and 

LEON3 processors, and
• Brief analysis whether or not each processor is expected fast enough

for a SW-only implementation of the MP3 decoder
– SWonly.txt

– Due:
• by Friday, Nov 5, 2010, at noon (email to doemer@uci.edu, “EECS222C HW5”)
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Assignment 5: Discussion

1. Bar chart showing the most-critical behaviors
in terms of computation operations
– Find blocks suitable for HW accelleration!

• CriticalBlocks.pdf

• CriticalBlocks.txt
– Starting from the decoder DUT, traverse down the hierarchy to find 

behaviors with most significant computation…
– decode_frame/layer_III/decode/granule/channels

» left/imdct
» right/imdct

– synth/synth_full/synth_channel{01}/filtercore
» dct32
» calc_sample
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Assignment 5: Discussion

2. Evaluate potential Processors for SW-only Implementation
– Deliverable 2:

• Estimated execution times for the ARM7TDMI and LEON3 processors
• Brief analysis whether or not each processor is expected fast enough

– SWonly.txt

– Candidate 1: ARM7TDMI processor at 50 MHz
• Profiler-estimated execution time: 206.0 ms

– Candidate 2: LEON3 processor at 50 MHz
• Profiler-estimated execution time: 733.3 ms

– Is this fast enough?
• Length of test stream spot1_3k.pcm:

36864 bytes = 8 frames * 1152 samples * 2 channels * 2 bytes per sample
• Monitor source code mp3monitor.sc:

44.1 kHz stereo stream (at 2 bytes per sample)
• Timing constraints:

Per frame: 1152 / 44.1 kHz =  26.12 ms
For entire test stream: 8*1152 / 44.1 kHz = 208.98 ms

 ARM7TDMI processor barely meets the timing constraint
 LEON3 processor misses the timing constraints (by more than 2x)

 Hardware accelleration becomes necessary!
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Refinement-based System Design Flow
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Refinement-based System Design Flow

• Step 1: Architecture Refinement
– Allocation of Processing Elements (PE)

• Type and number of processors

• Type and number of custom hardware blocks

• Type and number of system memories

– Mapping to PEs
• Map each behavior to a PE

• Map each channel to a PE

• Map each variable to a PE

– Result:
System architecture of concurrent PEs
with abstract communication in channels
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Refinement-based System Design Flow

• Step 2: Scheduling Refinement
– For each PE, serialize the execution of behaviors 

to a single thread of control
– Option (a): Static scheduling

• For each set of concurrent behaviors,
determine fixed order of execution

– Option (b): Dynamic scheduling by RTOS
• Choose scheduling policy,

i.e. Round-robin or priority-based
• For each set of concurrent behaviors,

determine scheduling priority

– Result:
System model with abstract RTOS scheduler 
inserted in each PE
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Refinement-based System Design Flow

• Step 3: Communication Refinement
– Allocation of system busses

• Type and number of system busses

• Type of bus protocol for each bus (if applicable)

• Number of transducers (if applicable)

• System connectivity

– Mapping of channels to busses
• Map each communication channel to a system bus

(or multiple busses, if applicable)

– Result:
Bus-functional model of the system
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Refinement-based System Design Flow

• Step 4: Hardware Refinement (for HW PE)
– Allocation of Register Transfer Level (RTL) components

• Type and number of functional units (e.g. adder, multiplier, ALU)
• Type and number of storage units (e.g. registers, register files)
• Type and number of interconnecting busses (drivers, multiplexers)

– Scheduling
• Basic blocks assigned to super-states
• Individual operations assigned to states (clock cycles)

– Binding
• Bind functional operations to functional units
• Bind variables to storage units
• Bind assignments/transfers to busses

– Result:
Clock-cycle accurate model of each HW PE

– Output: Synthesizable Verilog description

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 14

Refinement-based System Design Flow

• Step 5: Software Refinement (for SW PE)
– C code generation

• For selected target processor

– RTOS targeting
• For selected target RTOS

– Compilation to Instruction Set Architecture
• for Instruction Set Simulation (ISS)

– Assembly

– Result:
Clock-cycle accurate model of each SW PE

– Output: downloadable binary image
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Example Design Study

• Design of a MP3 Decoder
– Floating-point algorithm

• Somewhat different from ours

• Still very appropriate to compare

• Design Study
– Tutorial on Embedded System Design

• Topic: System-level Modeling

• Speaker: Andreas Gerstlauer, CECS

• Conference: ASP-DAC 2007, Yokohama, Japan

• Lecture7-ASPDAC07-AG-MP3.pdf
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Assignment 6

1. Refinement of the MP3 Decoder model in SCE
– Continue from “Spec” model of previous assignment
– Select an appropriate system architecture

• 1 ARM_7TDMI or LEON3 CPU at 50 MHz
• 0-6 HW_Standard accellerators at 100 MHz

– Perform the following refinement steps
• Architecture Refinement
• Scheduling Refinement
• Network Refinement
• Communication Link Refinement

– Transaction-level model (TLM)
– Pin-accurate model (PAM)

• Reference instructions:
– /home/doemer/EECS222C/Assignment6.txt

– Deliverable:
• Text file “refinement.txt” with

– short description of the chosen target architecture
– simulated execution times of each model

– Due:
• by Friday, Nov 12, 2010, at noon
• by email to doemer@uci.edu, with subject “EECS222C HW6”


