EECS222C: SoC Software Synthesis Lecture 7

EECS 222C.:
System-on-Chip Software Synthesis
Lecture 7

Rainer D6mer
doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science
University of California, Irvine

Lecture 7: Overview

Assignment 5
— Discussion

Refinement-based System Design Flow
Example Design Study

Assignment 6

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 2

(c) 2010 R. Doemer 1

EECS222C: SoC Software Synthesis

Assignment 5

1. Profile your MP3 Decoder model in SCE

— (continued from previous assignment)

— Load your MP3 project in SCE
e Project->Load “mp3.sce”

— Load your design model into SCE
e File->Import “testbench.sc”
< Project->AddDesign

* Right-click on testbench.sir in the project window, and
Rename the model to Spec

— Compile and simulate your model in SCE
< Validation->Compile
= Validation->Simulate

— Profile your MP3 decoder in SCE
= Validation->Profile

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

Assignment 5

2. Analyze your Profiling Results

— Use the graphical bar charts to compare the complexity
of the behaviors in your MP3 decoder
« In the hierarchy browser, select behaviors of interest
(use CTRL-LeftClick to select/deselect)
= RightClick->Graphs->Computation

— Determine the most-critical behaviors .
that contribute the most computation operations
* The goal is to find those behavioral blocks)
that make good choices for hardware accelleration
Computation Profile
— Deliverable 1: P
+ Bar chart showing
the selected behaviors .
in comparison to others
— CriticalBlocks.pdf
+ Textfile briefly (I) S A4
explaining your choice ' | I I
— CriticalBlocks.txt

Example Computation Profile
(block names omitted)
EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

[l convoinin

(c) 2010 R. Doemer

Lecture 7

EECS222C: SoC Software Synthesis Lecture 7

Assignment 5

3. Evaluate potential Processors for SW-only Implementation

— Select DUT as Mad_decoder decoder
* RightClick on decoder ->SetAsTop-Level

— Consider an ARM7TDMI processor (50MHz)
= Synthesis->Allocate PEs..
¢ Add Processors, ARM_7TDMI
* Choose default port configuration (i.e. 20000ps)
* Choose 50 MHz (change it from default 100MHz)
* Name the processor ARM7TDMI

— Map the entire decoder on to the ARM7TDMI processor
= Validation->Evaluate
< Validation->Show Estimates

— Determine the estimated execution time on the ARM7TDMI!

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 5

Assignment 5

4. Evaluate alternative Processors for SW-only Implementation

— Consider as alternative a LEON3 processor (50MHz)
= Synthesis->Allocate PEs..
* Add Processors, LEON3
e Choose default port configuration (i.e. 20000ps)
e Choose default clock frequency (i.e. 50 MHz)
* Name the processor LEON3

Map the entire decoder on to the LEON3 processor
< Validation->Evaluate

Determine the estimated execution time on the LEON3!

— Deliverable 2:

« Text file with the estimated execution times for the ARM7TDMI and
LEONS processors, and

+ Brief analysis whether or not each processor is expected fast enough
for a SW-only implementation of the MP3 decoder
— SWonly.txt
— Due:
« by Friday, Nov 5, 2010, at noon (email to doemer@uci.edu, “EECS222C HW5")

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 6

(c) 2010 R. Doemer 3

EECS222C: SoC Software Synthesis

Assignment 5: Discussion

1. Bar chart showing the most-critical behaviors
in terms of computation operations
— Find blocks suitable for HW accelleration!
e CriticalBlocks.pdf

Computation Profile
Rel. operations

[l comeutation

S &
& & & &7
e CriticalBlocks.txt
— Starting from the decoder DUT, traverse down the hierarchy to find
behaviors with most significant computation...
— decode_frame/layer_l11/decode/granule/channels
» left/imdct
» right/imdct
— synth/synth_full/synth_channel{01}/filtercore
» dct32
» calc_sample
EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 7

o o
s o

T MR- NN E—
sox H
ol

o ehJ-‘ & J@‘

&

Assignment 5: Discussion

2. Evaluate potential Processors for SW-only Implementation
— Deliverable 2:
« Estimated execution times for the ARM7TDMI and LEON3 processors

« Brief analysis whether or not each processor is expected fast enough
— SWonly.txt

Candidate 1: ARM7TDMI processor at 50 MHz

* Profiler-estimated execution time: 206 .0 ms

— Candidate 2: LEON3 processor at 50 MHz

* Profiler-estimated execution time: 733.3 ms

Is this fast enough?

¢ Length of test stream spotl_3k.pcm:
36864 bytes = 8 frames * 1152 samples * 2 channels * 2 bytes per sample

¢ Monitor source code mp3monitor.sc:
44_1 kHz stereo stream (at 2 bytes per sample)

« Timing constraints:
Per frame: 1152 / 44.1 kHz = 26.12 ms
For entire test stream: 8*1152 / 44.1 kHz = 208.98 ms

» ARM7TDMI processor barely meets the timing constraint
» LEON3 processor misses the timing constraints (by more than 2x)

» Hardware accelleration becomes necessary!

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 8

(c) 2010 R. Doemer

Lecture 7

EECS222C: SoC Software Synthesis

Refinement-based System Design Flow

Simulation model

|_,| Validation
Analysis

Simulation model

Architecture model

: |
i v

_.l Validation
Analysis

3 m
I Communication refinement
IP
e Simulation model
Communication model —
_.l Validation
i g Analysis
il

|
I

i R-TL Hardware | Interface | Software R—TOS
p P synthesis | synthesis [compilation 1]
|

i Compilation Simulation model

Validation
Analysis

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

Refinement-based System Design Flow

» Step 1: Architecture Refinement

— Allocation of Processing Elements (PE)
e Type and number of processors
e Type and number of custom hardware blocks
e Type and number of system memories
— Mapping to PEs
e Map each behavior to a PE
e Map each channel to a PE
e Map each variable to a PE
— Result:
System architecture of concurrent PEs
with abstract communication in channels

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

10

(c) 2010 R. Doemer

Lecture 7

EECS222C: SoC Software Synthesis

Refinement-based System Design Flow

» Step 2: Scheduling Refinement

— For each PE, serialize the execution of behaviors
to a single thread of control
— Option (a): Static scheduling
* For each set of concurrent behaviors,
determine fixed order of execution
— Option (b): Dynamic scheduling by RTOS
* Choose scheduling policy,
i.e. Round-robin or priority-based
* For each set of concurrent behaviors,
determine scheduling priority
— Result:
System model with abstract RTOS scheduler
inserted in each PE

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

Refinement-based System Design Flow

» Step 3: Communication Refinement

— Allocation of system busses
e Type and number of system busses
« Type of bus protocol for each bus (if applicable)
« Number of transducers (if applicable)
e System connectivity
— Mapping of channels to busses

« Map each communication channel to a system bus
(or multiple busses, if applicable)

— Result:
Bus-functional model of the system

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

12

(c) 2010 R. Doemer

Lecture 7

EECS222C: SoC Software Synthesis

Refinement-based System Design Flow

» Step 4: Hardware Refinement (for HW PE)
— Allocation of Register Transfer Level (RTL) components
« Type and number of functional units (e.g. adder, multiplier, ALU)
« Type and number of storage units (e.g. registers, register files)
< Type and number of interconnecting busses (drivers, multiplexers)
Scheduling
» Basic blocks assigned to super-states
« Individual operations assigned to states (clock cycles)
Binding
« Bind functional operations to functional units
 Bind variables to storage units
« Bind assignments/transfers to busses
Result:
Clock-cycle accurate model of each HW PE
Output: Synthesizable Verilog description

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 13

Refinement-based System Design Flow

» Step 5: Software Refinement (for SW PE)

— C code generation
 For selected target processor

— RTOS targeting
 For selected target RTOS

— Compilation to Instruction Set Architecture
« for Instruction Set Simulation (ISS)

— Assembly

— Result:
Clock-cycle accurate model of each SW PE

— Output: downloadable binary image

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer 14

(c) 2010 R. Doemer

Lecture 7

EECS222C: SoC Software Synthesis

Example Design Study

» Design of a MP3 Decoder

— Floating-point algorithm
* Somewhat different from ours
« Still very appropriate to compare

» Design Study

— Tutorial on Embedded System Design
* Topic: System-level Modeling
» Speaker: Andreas Gerstlauer, CECS
« Conference: ASP-DAC 2007, Yokohama, Japan

e Lecture7-ASPDACO7-AG-MP3.pdf

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

15

Assignment 6

1. Refinement of the MP3 Decoder model in SCE
— Continue from “Spec” model of previous assignment

— Select an appropriate system architecture
1 ARM_7TDMI or LEON3 CPU at 50 MHz
0-6 HW_Standard accellerators at 100 MHz

— Perform the following refinement steps
Architecture Refinement
Scheduling Refinement
Network Refinement
Communication Link Refinement
— Transaction-level model (TLM)
— Pin-accurate model (PAM)
Reference instructions:
— /home/doemer/EECS222C/Assignment6. txt
— Deliverable:
e Textfile “refinement. txt” with
— short description of the chosen target architecture
— simulated execution times of each model

— Due:
by Friday, Nov 12, 2010, at noon
by email to doemer@uci.edu, with subject “EECS222C HW6”

EECS222C: SoC Software Synthesis, Lecture 7 (c) 2010 R. Doemer

16

(c) 2010 R. Doemer

Lecture 7

