
EECS 111 - System Software 

Spring 2010 

 

Assignment 1 

 

Posted: Monday, April 5, 2010 

Due: Tuesday, April 13, 2010, 12pm (noon) 

 

A. Discussion: OS Concepts, I/O Methods, System Call 

The goal of these exercises is to review and clarify the understanding of essential 
aspects covered in recent lectures. 

 Operating System Concepts: Exercise 1.1 

 Input/Output Methods: Exercises 1.22 and 1.23 

 System Calls: Exercises 2.1 and 2.13 

These topics will be discussed at the beginning of this week’s discussion session. 

 

B. Project: C Programming Environment, Processes 

The goal of this first project assignment is to setup a working C programming 
environment on the Solaris operating system (EECS servers) that we will be 
using for this and the following assignments. At the same time, we will review 
and confirm some basic understanding of running processes. 

 

Step 1: Setup your C programming environment 

 We will use the EECS department servers as work platform, namely 
malibu.eecs.uci.edu (or, as alternatives, vivian.eecs.uci.edu 
and newport.eecs.uci.edu). If you do not have an account on these 
machines, send an email to the course instructor and an account will be 
created for you. 

 To work on the server, you will need to connect to one of the machines 
through a remote shell client. The secure-shell (SSH) protocol is 
necessary for this. Secure shell clients for all major operating systems 
exist for free, please refer to the resources page on the course web pages 
for details: http://eee.uci.edu/10s/18050/resources.html. 

 Hint: If you are not really familiar with C programming in the EECS 
environment, you may want to review the lecture slides of the introductory 
course on C programming: http://eee.uci.edu/09f/18010/schedule.html. 

http://eee.uci.edu/10s/18050/resources.html
http://eee.uci.edu/09f/18010/schedule.html


Create a new directory for this class (e.g. “eecs111”) and separate 
subdirectories for this and each following assignment (e.g. “eecs111/hw1/”). 
Place all files associated with an assignment in the corresponding directory. 
Ensure that the directories and all files have proper access permissions (e.g. 640 
for source files, 750 for directories and executables). 

 

Step 2: Create, compile, and test a simple C program 

As an initial starting point, create, compile and test (and debug, if necessary!) a 
simple C program that computes the n-th Fibonacci-number by use of recursion. 

Your source file should be named “fibo.c” and the corresponding executable 
should be called “fibo”. The program should read its input, an integer n, directly 
from the command line and print all reports to the stdout stream. Make sure 
your code includes proper error checking, reporting, and handling. 

Your compilation and execution log should look as follows: 

malibu.eecs.uci.edu % vi fibo.c 
malibu.eecs.uci.edu % gcc -O2 -Wall fibo.c -o fibo 
malibu.eecs.uci.edu % fibo 10 
fibo: computing fibonacci(10)... 
fibo: fibonacci(10) = 55 
malibu.eecs.uci.edu % 

 

Step 3: Measure the execution time of your implementation 

The Solaris operating system that we are using includes accounting support for 
measuring CPU time. We will use the system program /usr/bin/time to print 
the execution time of our programs. Lookup the Solaris manual page for the 
time command (it is in section 1 of the manual) and use it to determine the 
system, user, and elapsed execution times for computing the 40th, 41st, 42nd, and 
43rd Fibonacci numbers with your fibo program. 

List your measured times in a table (note the server name(s) you are using) and 
briefly explain why the times come out this way. Do the times match your 
expectation? Why? 

 

Step 4: Investigate the memory layout of a process 

In the text book, Figure 3.1 (page 102) shows the conceptual organization of a 
process in main memory. Extend (instrument) your Fibonacci program (name this 
one fibo_mem.c) so that it prints the memory location of the functions and 
variables in different memory segments. Remember, you can use the address-of 
operator (&) to determine the (virtual) addresses of functions and variables. Print 
these addresses as 8-digit hexadecimal numbers for easier interpretation. 

Your execution log should look similar to this (with X’s replaced): 



malibu.eecs.uci.edu % fibo_mem 2 
fibo_mem: computing fibonacci(2)... 
fibo_mem: address of XXXXXX is hex XXXXXXXX (in text segment) 
fibo_mem: address of XXXXXX is hex XXXXXXXX (in data segment) 
fibo_mem: address of XXXXXX is hex XXXXXXXX (in heap segment) 
fibo_mem: address of XXXXXX is hex XXXXXXXX (in stack segment) 
... 
fibo_mem: fibonacci(2) = 1 
malibu.eecs.uci.edu % 

Compare your addresses with Figure 3.1 and briefly explain whether or not they 
fit the expected memory layout. 

 

Deliverables: 

1. Statement: “I have read the Section on Academic Honesty in the UCI 
Catalogue of Classes (available online at 
http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0) and submit 
this work accordingly.” 

2. Source file: fibo.c, execution log fibo.log, table with execution times, 
and brief interpretation of the results (1-2 paragraphs) [50 points]. 

3. Source file: fibo_mem.c, execution log fibo_mem.log, and brief 
interpretation of the results (1 paragraph) [50 points]. 

 

Submission instructions: 

To submit your homework, send the deliverables in an email with subject 
“EECS111 HW1” to the course instructor at doemer@uci.edu. 

To ensure proper credit, be sure to send your email before the deadline: 
Tuesday, April 13, 2010, at 12:00pm (noon). 

 

-- 

Rainer Doemer (EH 3217, x4-9007, doemer@uci.edu) 

http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0
mailto:doemer@uci.edu

