
EECS 111 - System Software 

Spring 2010 

 

Assignment 2 

 

Posted: Monday, April 5, 2010 

Due: Tuesday, April 20, 2010, 12pm (noon) 

 

A. Discussion: Processes 

The goal of these exercises is to review and clarify the understanding of essential 
aspects covered in recent lectures. 

 Process creation: Exercises 3.3, 3.9, 3.10, and 3.13 

 Context switch: Exercise 3.7 

These topics will be discussed at the beginning of this week’s discussion session. 

 

B. Project: Parallel Processes, Inter-Process Communication 

The goal of this project assignment is to speed-up the program developed in the 
previous assignment by using parallel processes that utilize the multiple CPUs 
available on the EECS department servers. 

 

Step 1: Setup 

 We will use the very same setup as in the previous project. Please refer to 
the instructions of Assignment 1 for details. 

 For this project, we will extend the code written previously. To get started, 
create a copy of your previous source code and name it fibo2.c. 

 

Step 2: Create two parallel child processes 

To enable parallel execution, we will create two child processes which both 
perform a part of the required Fibonacci computation. When both child processes 
have completed, the parent process will combine and report the results. 

Specifically, the n-th Fibonacci-number is the sum of Fibonacci(n-1) and 
Fibonacci(n-2). Thus, to share the work, we will let child process 1 compute 
Fibonacci(n-1), and child process 2 will compute Fibonacci(n-2). This way, the 
only dependence between the two tasks is the addition of the two results, which 
can be performed easily by the parent after both child processes have terminated. 



In your program, create each child process by using the fork() system call and 
separate the control flow of the child and parent processes by examining the 
returned process identifier. After the child has done its job, it should cleanly 
terminate its process. The two processes for the children will be very similar. The 
parent process, on the other hand, will simply wait for the two children to 
complete their work by using the wait() system call, and can then add the two 
results. 

The example code shown in Figure 3.10 in the text book (page 113) is very 
helpful for the proper process creation and termination. You may also want to 
consult the Solaris manual pages for the fork()and wait() system calls (both 
are in section 2 of the manual). Be sure to add proper error checking, reporting, 
and handling to your code. 

 

Step 3: Use inter-process communication via shared-memory 

In order for the child processes to report their results to the parent process, we 
will need to implement some inter-process communication. For this project, we 
will use shared memory for this purpose. 

The example code shown in Figure 3.16 in the text book (page 125) is a nice 
example of shared-memory communication implemented via the POSIX API 
which we will use for this assignment. Again, please consult the respective 
Solaris manual pages for a detailed description of the shared memory functions 
available on our servers, and be sure to use proper error checking, reporting, and 
handling in your code. 

Specifically for our parallel Fibonacci program, we need to communicate two 
integer values (one result from each child) to the parent process. To do this, 
allocate 8 bytes (i.e. sizeof(int[2]) of shared memory before the child 
processes are created. This way, the children will automatically have access to 
the same shared memory of the parent and can copy their results into the 
respective slot of this shared integer array. After the child processes have 
terminated, the parent process can retrieve the results from the shared memory, 
release the shared memory again, combine and print the final result, and finally 
terminate itself. 

 

Step 4: Test and compare your parallel implementation 

When developing parallel programs, careful planning and proper identification of 
parallel tasks are essential. In your program, print descriptive messages on the 
screen when each process starts and ends. 

When running the program, your execution log should look similar to this: 

malibu.eecs.uci.edu % fibo2 42 
fibo2: computing fibonacci(42)... 
fibo2: child1 computing fibonacci(41)... 
fibo2: child2 computing fibonacci(40)... 



fibo2: child2 computed fibonacci(40) = 102334155 
fibo2: child1 computed fibonacci(41) = 165580141 
fibo2: fibonacci(42) = 267914296 
malibu.eecs.uci.edu % 

To compare your parallel implementation with the previous assignment, use 
again the /usr/bin/time command to measure the user, system, and elapsed 
execution times, and compute the 40th, 41st, 42nd, and 43rd Fibonacci numbers 
with your new fibo2 program. 

List your measured times in a table (note the server name(s) you are using) and 
compare them against the times measured in the previous assignment. Briefly 
explain why the times come out this way. Do the times match your expectation? 
How do the user and elapsed (real) times compare? Why? 

What is different from the naïve expectation that your program will be twice as 
fast as before? Why? 

 

Deliverables: 

1. Statement: “I have read the Section on Academic Honesty in the UCI 
Catalogue of Classes (available online at 
http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0) and submit 
this work accordingly.” 

2. Source file: fibo2.c, execution log fibo2.log, table with comparison 
of execution times, and brief interpretation of the results (3-4 paragraphs) 
[100 points]. 

 

Submission instructions: 

To submit your homework, send the deliverables in an email with subject 
“EECS111 HW2” to the course instructor at doemer@uci.edu. 

To ensure proper credit, be sure to send your email before the deadline: 
Tuesday, April 20, 2010, at 12:00pm (noon). 

 

-- 

Rainer Doemer (EH 3217, x4-9007, doemer@uci.edu) 

http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0
mailto:doemer@uci.edu

