
EECS 111 - System Software

Spring 2010

Assignment 4

Posted: Wednesday, April 28, 2010

Due: Tuesday, May 11, 2010, 12pm (noon)

A. Discussion: Process Synchronization

The goal of these exercises is to review and clarify the understanding of essential
aspects covered in recent lectures.

 Synchronization primitives: Exercises 6.26, 6.28, and 6.33.

 Application problems: Exercise 6.37 and 6.38

These topics are planned to be discussed in this week’s discussion session.

B. Project: Producer Consumer Problem, Mutex, Condition Variables

The goal of this project assignment is to improve the bounded buffer
implementation in our producer consumer example by use of Pthread mutex and
condition variables. Inter-thread communication through proper synchronization
primitives will greatly benefit the efficiency of the bounded buffer in terms of
space and time.

As before, we will use the EECS department servers which offer parallel
execution of threads on multiple CPUs.

Step 1: Setup

 We will use the very same setup as in the previous project. Please refer to
the instructions of Assignment 3 for details.

 For this project, we will extend the code written previously. To get started,
create a copy of your previous source code and name it prodcons2.c.
(You may want to start with the posted solution for Assignment 3 if your
own code has had any problems.)

 For this assignment, we will only modify the implementation of the
bounded buffer. All other parts in your program should remain unmodified.
In particular, do not modify any of the following functions:

int fibonacci(int n);
void *produce(void *arg);

void *consume(void *arg);
int main(int argc, char **argv);

Step 2: Fully utilize the buffer size

In the previous assignment, we have been using the initial bounded buffer
implementation from chapter 3 in the textbook (version 1). As outlined in the book
and discussed in Lecture 9, this implementation cannot fully utilize the allocated
buffer space. At most BUFFER_SIZE-1 items can be stored.

In chapter 6, the textbook extends the implementation by an additional variable
counter in order to fix the space inefficiency. Extend and modify your code the
same way. This should result in the bounded buffer implementation version 2
(see Lecture 9).

Step 3: Implement proper synchronization

As also discussed in the textbook and in Lecture 9, version 2 of the bounded
buffer contains a race condition that renders this implementation unsafe! This
needs to be fixed now.

To do this, we will use Pthread mutex and condition variables. Add the required
synchronization variables to the shared variables of the buffer and use them by
appropriate pthread API calls in the send() and receive() functions so that
both the race condition and busy waiting in the bounded buffer are eliminated.

Note that there is not much code to change in your program.

Step 4: Compile and test your implementation

When running your improved program, your execution log should look very
similar to the previous assignment. However, some changes may be noticeable.
Briefly list the possible changes in the log and describe why (or why not) you
notice these in your actual execution.

Again, state your expectation of the execution times (user, system, and
elapsed/real time), analyze your program using the /usr/bin/time command
for max=42 (note the server name you are using), compute the new CPU load,
and compare the results to the previous assignment. Briefly explain why or why
not the observed results match your expectation.

Deliverables:

1. Statement: “I have read the Section on Academic Honesty in the UCI
Catalogue of Classes (available online at
http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0) and submit
this work accordingly.”

http://www.editor.uci.edu/catalogue/appx/appx.2.htm#gen0

2. Source file prodcons2.c, execution log prodcons2.log, and a brief
text file prodcons2.txt explaining the results and answering the above
questions (3-4 paragraphs) [100 points].

Submission instructions:

To submit your homework, send the deliverables in an email with subject
“EECS111 HW3” to the course instructor at doemer@uci.edu.

To ensure proper credit, be sure to send your email before the deadline:
Tuesday, May 11, 2010, at 12:00pm (noon).

--

Rainer Doemer (EH 3217, x4-9007, doemer@uci.edu)

mailto:doemer@uci.edu

