
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 2: Operating-System
Structures

(slides selected/modified by R. Doemer, 04/01/10)

2.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 Operating System Debugging

 Operating System Generation

 System Boot

(slide modified by R. Doemer, 04/01/10)

2.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the services an operating system provides
to users, processes, and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized
and how they boot

(slide modified by R. Doemer, 04/01/10)

2.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services

 One set of operating-system services provides functions
that are helpful to the user:
 User interface - Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI),
Graphics User Interface (GUI), Batch

 Program execution - The system must be able to

 load a program into memory and to run that program,

 end execution, either normally or abnormally (indicating error)

 I/O operations

 A running program may require I/O (file, or I/O device)

 File-system manipulation

 The file system allows programs to read and write files and
directories, create and delete them, search them, list file Information,
and manage permissions.

(slide modified by R. Doemer, 04/01/10)

2.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont)

 One set of operating-system services provides functions
that are helpful to the user (Cont):

 Communications

 Processes may exchange information, on the same computer or
between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

 Error detection

OS needs to handle possible errors

 Errors may occur in the CPU and memory hardware, in I/O devices,
and in user programs

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the programmer’s abilities
to efficiently use the system

(slide modified by R. Doemer, 04/01/10)

2.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

2.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont)

 Other OS functions exist for:

 Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

Many types of resources exist, including CPU cycles, main
memory,
file storage, and I/O devices

 Accounting - To keep track of which users use how much and
what kinds of computer resources

 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other

 Protection ensures controlled access to system resources

 Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

(slide modified by R. Doemer, 04/01/10)

2.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter
allows direct textual command entry

Sometimes implemented in kernel,
sometimes by systems program

Sometimes multiple flavors implemented – shells

Primarily fetches a command from user and executes it

– Sometimes commands are built-in

– Sometimes commands are just names of programs

» Adding new features doesn’t require shell
modification

(slide modified by R. Doemer, 04/01/10)

2.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath
and shells available

 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

2.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct system call use

 Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (UNIX, Linux, and Mac OS X), and
Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?
And what is the difference between the two??

(Note that the system-call names used throughout this text are generic)

(slide modified by R. Doemer, 04/01/10)

2.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

2.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of System API

 Consider the ReadFile() function in the Win32 API

 a function for reading data from a file

 A description of the parameters passed to ReadFile()

 HANDLE file—the file to be read

 LPVOID buffer—a buffer where the data will be read into and written from

 DWORD bytesToRead—the number of bytes to be read into the buffer

 LPDWORD bytesRead—the number of bytes read during the last read

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

(slide modified by R. Doemer, 04/01/10)

2.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

API – System Call – OS Relationship

(slide modified by R. Doemer, 04/01/10)

fopen()

2.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

2.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call, Dual-Mode Operation

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or
kernel code

 Some instructions designated as privileged, only executable in
kernel mode

 System call changes mode to kernel, return from call resets it to user

(slide copied from Chapter 1, modified by R. Doemer, 04/01/10)

2.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table
indexed according to these numbers

 The system call interface invokes intended system call in OS kernel
and returns the status of the system call and any return values

 The caller needs to know nothing about how the system call is implemented

 Just needs to obey the API and understand what OS will do

 Most details of OS interface are hidden from programmer by API

Managed by run-time support library
(set of functions built into libraries included with compiler)

(slide modified by R. Doemer, 04/01/10)

2.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Parameter Passing

 Often, more information is required than to simply identify
the desired system call

 Exact type and amount of information vary according to OS and call

 Three general methods used to pass parameters to the OS

 Parameters in registers

 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory,
and address of block passed as a parameter in a register

 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

 Block and stack methods do not limit the number or length of parameters
being passed

(slide modified by R. Doemer, 04/01/10)

2.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parameter Passing via Table

2.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Types of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications

 Protection

2.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Windows and Unix System Calls

2.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 System programs provide a convenient environment for program
development and execution.

 System programs can be divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users view of the operation system is defined
by system programs, not the actual system calls.

(slide modified by R. Doemer, 04/01/10)

2.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 File management

 Create, delete, copy, rename, print, dump, and list files and
directories

 Status information

 Some ask the system for info:
date, time, amount of available memory, disk space,
number of users

 Others provide detailed performance, logging, and debugging
information

 Typically, these programs format and print the output
to the terminal or other output devices

 Some systems implement a registry:
used to store and retrieve configuration information

(slide modified by R. Doemer, 04/01/10)

2.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs (cont’d)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform
transformations of the text

 Programming-language support

 Compilers, assemblers, debuggers and interpreters sometimes provided

 Program loading and execution

 Absolute loaders, relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

 Communications

 Provide the mechanism for creating virtual connections among
processes, users, and computer systems

 Allow users to send messages to one another’s screens, browse web
pages, send electronic-mail messages, log in remotely, transfer files
from one machine to another

(slide modified by R. Doemer, 04/01/10)

2.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some approaches
have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, easy to
learn, reliable, safe, and fast

 System goals – operating system should be easy to design, implement,
and maintain, as well as flexible, reliable, error-free, and efficient

2.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Design and Implementation (Cont)

 Important principle to separate:

Policy: What will be done?
Mechanism: How to do it?

 Mechanisms determine how to do something,
policies decide what will be done

 The separation of policy from mechanism is a very important principle

 It allows maximum flexibility if policy decisions are to be changed later

(slide modified by R. Doemer, 04/01/10)

2.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Simple Structure

 MS-DOS – written to provide the most functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

2.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

MS-DOS Layer Structure

2.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Layered Approach

 The operating system is divided into a number of layers (levels), each built
on top of lower layers:

 The bottom layer (layer 0), is the hardware

 The highest (layer N) is the user interface.

 With modularity, layers are selected such that
each uses functions (operations) and services of only lower-level layers

(slide modified by R. Doemer, 04/01/10)

2.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Traditional UNIX System Structure

2.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring.

 The UNIX OS consists of two separable parts

 System programs

 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory management,
and other operating-system functions
(a large number of functions for one level)

(slide modified by R. Doemer, 04/01/10)

2.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Layered Operating System

2.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Boot

 Operating system must be made available to hardware
so hardware can start it

 Bootstrap loader

 Locates the kernel, loads it into memory, and starts it

 Small piece of code

 Sometimes two-step process where boot block at fixed location
loads bootstrap loader

 When power initialized on system, execution starts
at a fixed memory location

 Firmware used to hold initial boot code

(slide modified by R. Doemer, 04/01/10)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 2

