
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 2: Operating-System
Structures

(slides selected/modified by R. Doemer, 04/01/10)

2.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 Operating System Debugging

 Operating System Generation

 System Boot

(slide modified by R. Doemer, 04/01/10)

2.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the services an operating system provides
to users, processes, and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized
and how they boot

(slide modified by R. Doemer, 04/01/10)

2.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services

 One set of operating-system services provides functions
that are helpful to the user:
 User interface - Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI),
Graphics User Interface (GUI), Batch

 Program execution - The system must be able to

 load a program into memory and to run that program,

 end execution, either normally or abnormally (indicating error)

 I/O operations

 A running program may require I/O (file, or I/O device)

 File-system manipulation

 The file system allows programs to read and write files and
directories, create and delete them, search them, list file Information,
and manage permissions.

(slide modified by R. Doemer, 04/01/10)

2.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont)

 One set of operating-system services provides functions
that are helpful to the user (Cont):

 Communications

 Processes may exchange information, on the same computer or
between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

 Error detection

OS needs to handle possible errors

 Errors may occur in the CPU and memory hardware, in I/O devices,
and in user programs

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the programmer’s abilities
to efficiently use the system

(slide modified by R. Doemer, 04/01/10)

2.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A View of Operating System Services

2.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Services (Cont)

 Other OS functions exist for:

 Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

Many types of resources exist, including CPU cycles, main
memory,
file storage, and I/O devices

 Accounting - To keep track of which users use how much and
what kinds of computer resources

 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other

 Protection ensures controlled access to system resources

 Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

(slide modified by R. Doemer, 04/01/10)

2.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter
allows direct textual command entry

Sometimes implemented in kernel,
sometimes by systems program

Sometimes multiple flavors implemented – shells

Primarily fetches a command from user and executes it

– Sometimes commands are built-in

– Sometimes commands are just names of programs

» Adding new features doesn’t require shell
modification

(slide modified by R. Doemer, 04/01/10)

2.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

 Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath
and shells available

 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

2.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct system call use

 Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (UNIX, Linux, and Mac OS X), and
Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?
And what is the difference between the two??

(Note that the system-call names used throughout this text are generic)

(slide modified by R. Doemer, 04/01/10)

2.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

2.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of System API

 Consider the ReadFile() function in the Win32 API

 a function for reading data from a file

 A description of the parameters passed to ReadFile()

 HANDLE file—the file to be read

 LPVOID buffer—a buffer where the data will be read into and written from

 DWORD bytesToRead—the number of bytes to be read into the buffer

 LPDWORD bytesRead—the number of bytes read during the last read

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

(slide modified by R. Doemer, 04/01/10)

2.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

API – System Call – OS Relationship

(slide modified by R. Doemer, 04/01/10)

fopen()

2.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

2.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call, Dual-Mode Operation

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or
kernel code

 Some instructions designated as privileged, only executable in
kernel mode

 System call changes mode to kernel, return from call resets it to user

(slide copied from Chapter 1, modified by R. Doemer, 04/01/10)

2.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table
indexed according to these numbers

 The system call interface invokes intended system call in OS kernel
and returns the status of the system call and any return values

 The caller needs to know nothing about how the system call is implemented

 Just needs to obey the API and understand what OS will do

 Most details of OS interface are hidden from programmer by API

Managed by run-time support library
(set of functions built into libraries included with compiler)

(slide modified by R. Doemer, 04/01/10)

2.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Call Parameter Passing

 Often, more information is required than to simply identify
the desired system call

 Exact type and amount of information vary according to OS and call

 Three general methods used to pass parameters to the OS

 Parameters in registers

 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory,
and address of block passed as a parameter in a register

 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

 Block and stack methods do not limit the number or length of parameters
being passed

(slide modified by R. Doemer, 04/01/10)

2.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parameter Passing via Table

2.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Types of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications

 Protection

2.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Windows and Unix System Calls

2.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 System programs provide a convenient environment for program
development and execution.

 System programs can be divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users view of the operation system is defined
by system programs, not the actual system calls.

(slide modified by R. Doemer, 04/01/10)

2.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs

 File management

 Create, delete, copy, rename, print, dump, and list files and
directories

 Status information

 Some ask the system for info:
date, time, amount of available memory, disk space,
number of users

 Others provide detailed performance, logging, and debugging
information

 Typically, these programs format and print the output
to the terminal or other output devices

 Some systems implement a registry:
used to store and retrieve configuration information

(slide modified by R. Doemer, 04/01/10)

2.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Programs (cont’d)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform
transformations of the text

 Programming-language support

 Compilers, assemblers, debuggers and interpreters sometimes provided

 Program loading and execution

 Absolute loaders, relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

 Communications

 Provide the mechanism for creating virtual connections among
processes, users, and computer systems

 Allow users to send messages to one another’s screens, browse web
pages, send electronic-mail messages, log in remotely, transfer files
from one machine to another

(slide modified by R. Doemer, 04/01/10)

2.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some approaches
have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, easy to
learn, reliable, safe, and fast

 System goals – operating system should be easy to design, implement,
and maintain, as well as flexible, reliable, error-free, and efficient

2.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Design and Implementation (Cont)

 Important principle to separate:

Policy: What will be done?
Mechanism: How to do it?

 Mechanisms determine how to do something,
policies decide what will be done

 The separation of policy from mechanism is a very important principle

 It allows maximum flexibility if policy decisions are to be changed later

(slide modified by R. Doemer, 04/01/10)

2.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Simple Structure

 MS-DOS – written to provide the most functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

2.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

MS-DOS Layer Structure

2.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Layered Approach

 The operating system is divided into a number of layers (levels), each built
on top of lower layers:

 The bottom layer (layer 0), is the hardware

 The highest (layer N) is the user interface.

 With modularity, layers are selected such that
each uses functions (operations) and services of only lower-level layers

(slide modified by R. Doemer, 04/01/10)

2.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Traditional UNIX System Structure

2.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating
system had limited structuring.

 The UNIX OS consists of two separable parts

 System programs

 The kernel

 Consists of everything below the system-call interface and
above the physical hardware

 Provides the file system, CPU scheduling, memory management,
and other operating-system functions
(a large number of functions for one level)

(slide modified by R. Doemer, 04/01/10)

2.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Layered Operating System

2.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

System Boot

 Operating system must be made available to hardware
so hardware can start it

 Bootstrap loader

 Locates the kernel, loads it into memory, and starts it

 Small piece of code

 Sometimes two-step process where boot block at fixed location
loads bootstrap loader

 When power initialized on system, execution starts
at a fixed memory location

 Firmware used to hold initial boot code

(slide modified by R. Doemer, 04/01/10)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 2

