Chapter 2: Operating-System
Structures

Operating System Concepts — 8" Edition,

(slides selected/modified by R. Doemer, 04/01/10)
Silberschatz, Galvin and Gagne ©2009

™

*\J

w..-f Chapter 2: Operating-System Structures

Operating System Services
System Calls
Types of System Calls

System Programs

Operating System Structure

System Boot

Operating System Concepts — 8 Edition

User Operating System Interface

2.2

Operating System Design and Implementation

Silberschatz, Galvin and Gagne ©2009

r & Objectives

m To describe the services an operating system provides
to users, processes, and other systems

m To discuss the various ways of structuring an operating system

To explain how operating systems are installed and customized
and how they boot

(slide modified by R. Doemer, 04/01/10) b !
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 2.3

™,

|

“$7’ Operating System Services

® One set of operating-system services provides functions
that are helpful to the user:

e User interface - Almost all operating systems have a user interface (Ul)

» Varies between Command-Line (CLI),
Graphics User Interface (GUI), Batch

e Program execution - The system must be able to

» load a program into memory and to run that program,

» end execution, either normally or abnormally (indicating error)
e |/O operations

» A running program may require 1/O (file, or I/O device)

e File-system manipulation

» The file system allows programs to read and write files and
directories, create and delete them, search them, list file Information,
and manage permissions.

“
(slide modified by R. Doemer, 04/01/10) .. ':

Operating System Concepts — 81" Edition 2.4 Silberschatz, Galvin and Gagne ©2009

™

“»77 Operating System Services (Cont)

by

m One set of operating-system services provides functions
that are helpful to the user (Cont):

e Communications

» Processes may exchange information, on the same computer or
between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

e Error detection
» OS needs to handle possible errors

» Errors may occur in the CPU and memory hardware, in I/O devices,
and in user programs

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the programmer’s abilities _
to efficiently use the system S5 \‘

(slide modified by R. Doemer, 04/01/10) '}-

Operating System Concepts — 8" Edition 25 Silberschatz, Galvin and Gagne ©2009

=

“»”” A View of Operating System Services

user and other syslem programs

| Gl —| batch command line |
user interfaces ‘
system calls
program 1o file resource
execution ‘ operations systems eemmnicalion allocation Accountng
‘ error pm;c.;mn ‘
detection _ socurty
| services L]

operating system

hardware

Operating System Concepts — 81" Edition 2.6 Silberschatz, Galvin and Gagne ©2009

.

.

»”" Operating System Services (Cont)

&

m Other OS functions exist for:

e Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

» Many types of resources exist, including CPU cycles, main
memory,
file storage, and /O devices

e Accounting - To keep track of which users use how much and
what kinds of computer resources

e Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other

» Protection ensures controlled access to system resources

» Security of the system from outsiders requires user
authentication, extends to defending external /O devices from
invalid access attempts
iy
(slide modified by R. Doemer, 04/01/10) . .
Operating System Concepts — 8" Edition 2.7 Silberschatz, Galvin and Gagne ©2009

™

"‘“i’:ﬁ User Operating System Interface - CLI

= Command Line Interface (CLI) or command interpreter
allows direct textual command entry

» Sometimes implemented in kernel,
sometimes by systems program

» Sometimes multiple flavors implemented — shells

» Primarily fetches a command from user and executes it
Sometimes commands are built-in
Sometimes commands are just names of programs

» Adding new features doesn't require shell
modification

/::':.. il
(slide modified by R. Doemer, 04/01/10) .. ':
Operating System Concepts — 81" Edition 2.8 Silberschatz, Galvin and Gagne ©2009

.

T~
“%7/ User Operating System Interface - GUI

m User-friendly desktop metaphor interface
e Usually mouse, keyboard, and monitor
e |cons represent files, programs, actions, etc

e Various mouse buttons over objects in the interface cause various
actions (provide information, options, execute function, open directory
(known as a folder)

e Invented at Xerox PARC
® Many systems now include both CLI and GUI interfaces
e Microsoft Windows is GUI with CLI “command” shell

e Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath
and shells available

e Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Y

[(®

k

=}
@

Operating System Concepts — 8" Edition 2.9 Silberschatz, Galvin and Gagne ©20

r & System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct system call use

B Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (UNIX, Linux, and Mac OS X), and
Java API for the Java virtual machine (JVM)

® Why use APIs rather than system calls?
And what is the difference between the two??

(Note that the system-call names used throughout this text are generic)

/"’“\‘

i v“l»_‘ |

(slide modified by R. Doemer, 04/01/10) .. 5.
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8 Edition 2.10

™

N Example of System Calls

m System call sequence to copy the contents of one file to another file

source file || > lestination file

8 Example System Call Sequence 0

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Creale output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

\Tarminate normally)
Operating System Concepts — 8" Edition 2.11 Silberschatz, Galvin and Gagn; ©2059
™
¢)
v ke rd
r & Example of System API

m Consider the ReadFile() function in the Win32 API
e a function for reading data from a file

return value

i

BOOL ReadFile ¢ (HANDLE file,
LEVOID buffer,
T DWORD bytes To Read, parameters
LPDWORD bytes Read,

x LPOVERLAPPED wl) ;
function name ~ * 2 evL)

m A description of the parameters passed to ReadFile()

HANDLE file—the file to be read

LPVOID buffer—a buffer where the data will be read into and written from

DWORD bytesToRead—the number of bytes to be read into the buffer

LPDWORD bytesRead—the number of bytes read during the last read

LPOVERLAPPED ovl—indicates if overlapped I/O is being used -
£

-
(slide modified by R. Doemer, 04/01/10) .. 1.*
Operating System Concepts — 81" Edition 2.12 Silberschatz, Galvin and Gagne ©2009

»

MJ

“$77 APl — System Call — OS Relationship

e g _
<_ user application _>
(- _/'—-,__‘____/"‘—"
fopen()
user
mode
system call interface
kernel
mode A
> | : open ()
d Implementation
i = » ofopen ()
y system call
return ———— »,.r-\\
__/f'*»-,j
(slide modified by R. Doemer, 04/01/10) ‘,_‘-
Operating System Concepts — 8t Edition 2.13 Silberschatz, Galvin and Gagne ©2009
™

MJ

“#7/ standard C Library Example

m C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

— printf ("Greetings®);

return 0;

}

user

node
—{ standard C library }—
emel

node
(mite () >
= A
/7 write() >
&\syslem call

2.14 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8 Edition

P _
“%7/ System Call, Dual-Mode Operation

® Dual-mode operation allows OS to protect itself and other system
components

e User mode and kernel mode
e Mode bit provided by hardware

» Provides ability to distinguish when system is running user code or
kernel code

» Some instructions designated as privileged, only executable in
kernel mode

» System call changes mode to kernel, return from call resets it to user

user process
user mode
user process executing }—p{ calls system call | l return from system call | | (Mode bit=1)
\ 7!
1 rs
] 7
trap return
kernel mode bit =0 mode bit =1
kernel mode
(mode bit = 0) e
execule system call ql\:\l
=
(slide copied from Chapter 1, modified by R. Doemer, 04/01/10) 4« N
Operating System Concepts — 8" Edition 2.15 Silberschatz, Galvin and Gagne ©2009
™

|

“$7’ System Call Implementation

m Typically, a number associated with each system call

e System-call interface maintains a table
indexed according to these numbers

B The system call interface invokes intended system call in OS kernel
and returns the status of the system call and any return values

B The caller needs to know nothing about how the system call is implemented
e Just needs to obey the APl and understand what OS will do
e Most details of OS interface are hidden from programmer by API

» Managed by run-time support library
(set of functions built into libraries included with compiler)

(slide modified by R. Doemer, 04/01/10) .. [:*
Operating System Concepts — 81" Edition 2.16 Silberschatz, Galvin and Gagne ©2009

B

“%7/ System Call Parameter Passing

m Often, more information is required than to simply identify
the desired system call

e Exact type and amount of information vary according to OS and call
m Three general methods used to pass parameters to the OS
e Parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory,
and address of block passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

m Block and stack methods do not limit the number or length of parameters
being passed

(slide modified by R. Doemer, 04/01/10)

Operating System Concepts — 8" Edition 2.17 Silberschatz, Galvin and Gagne ©2009

“$77 Parameter Passing via Table

register

X: parameters
for call

» Use parameters code for
load address X -_/ from table X system
system call 13 — > call 13

user program

operating system

k

=1
@

Operating System Concepts — 81" Edition 2.18 Silberschatz, Galvin and Gagne ©20

™
S
> Types of System Calls
® Process control
® File management
m Device management
® Information maintenance
® Communications
m Protection
h ﬂ "
Operating System Concepts — 8" Edition 2.19 Silberschatz, Galvin and Gagne ©2009
™
ik g/ . .
277 Examples of Windows and Unix System Calls
Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject() wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode() ioctl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer() alamm()
Sleep() sleep()
Communication CreatePipe() pipe()
CreateFileMapping() shmget ()
MapViewDfFile() mmap()
Protection SetFileSecurity() chmod()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()
Operating System Concepts — 8" Edition 2.20 Silberschatz, Galvin and Gagne ©2009

™

.

r & System Programs

m System programs provide a convenient environment for program
development and execution.

m System programs can be divided into:
e File manipulation
e Status information
e File modification
e Programming language support
e Program loading and execution

e Communications
e Application programs

® Most users view of the operation system is defined
by system programs, not the actual system calls.

iy

_»-‘-» o |

(slide modified by R. Doemer, 04/01/10) . T

Operating System Concepts — 8" Edition 2.21 Silberschatz, Galvin and Gagne ©2009

™.
(oot
i rd
r System Programs

m File management

e Create, delete, copy, rename, print, dump, and list files and
directories

B Status information

e Some ask the system for info:
date, time, amount of available memory, disk space,
number of users

e Others provide detailed performance, logging, and debugging
information

e Typically, these programs format and print the output
to the terminal or other output devices

e Some systems implement a registry:
used to store and retrieve configuration information
3N
NN ‘\'I
(slide modified by R. Doemer, 04/01/10) . 5.+
Operating System Concepts — 8 Edition 2.22 Silberschatz, Galvin and Gagne ©2009

P System Programs (cont’d)

® File modification
e Text editors to create and modify files

e Special commands to search contents of files or perform
transformations of the text

® Programming-language support
e Compilers, assemblers, debuggers and interpreters sometimes provided
m Program loading and execution

e Absolute loaders, relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

®m Communications

e Provide the mechanism for creating virtual connections among
processes, users, and computer systems

e Allow users to send messages to one another’s screens, browse web
pages, send electronic-mail messages, log in remotely, transfer files
from one machine to another

£
o ""».. |
(slide modified by R. Doemer, 04/01/10) a5
Operating System Concepts — 8" Edition 2.23 Silberschatz, Galvin and Gagne ©2009

-
L' '1.',

Operating System Design and Implementation

m Design and Implementation of OS not “solvable”, but some approaches
have proven successful

Internal structure of different Operating Systems can vary widely
Start by defining goals and specifications
Affected by choice of hardware, type of system

User goals and System goals

e User goals — operating system should be convenient to use, easy to
learn, reliable, safe, and fast

e System goals — operating system should be easy to design, implement,
and maintain, as well as flexible, reliable, error-free, and efficient

£3D
A .I"l»_-‘ 5
=4
Operating System Concepts — 81" Edition 2.24 Silberschatz, Galvin and Gagne ©2009

™

s

\”"'_*';" Operating System Design and Implementation (Cont)

® Important principle to separate:

Policy: What will be done?
Mechanism: How to do it?

® Mechanisms determine how to do something,
policies decide what will be done

e The separation of policy from mechanism is a very important principle
e It allows maximum flexibility if policy decisions are to be changed later

T

(slide modified by R. Doemer, 04/01/10) .. L.
2.25 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition

> Simple Structure

m MS-DOS - written to provide the most functionality in the least space
e Not divided into modules

e Although MS-DOS has some structure, its interfaces and levels of
functionality are not well separated

[

AN

Silberschatz, Galvin and Gagne ©20!

S k
@

Operating System Concepts — 8 Edition 2.26

*!-'F\';/I-/
application program
resident system program
MS-DOS device drivers
ROM BIOS device drivers
o ~..
Operating System Concepts — 8 Edition 2.27 Silberschatz, Galvin and Gagne ©2009
.
s
Xl Layered Approach

B The operating system is divided into a number of layers (levels), each built
on top of lower layers:

The bottom layer (layer 0), is the hardware
The highest (layer N) is the user interface.

® With modularity, layers are selected such that
each uses functions (operations) and services of only lower-level layers

(slide modified by R. Doemer, 04/01/10) . ©5.*
Operating System Concepts — 8" Edition 2.28 Silberschatz, Galvin and Gagne ©2009

=

“%”" Traditional UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel
_ signals terminal file system CPU scheduling
@ . -
c J handling swapping block /O page replacement
2 character 1/O system system demand paging
terminal drivers disk and tape drivers virtual memory
: kernel interface to the hardware
terminal controllers device controllers memory controllers
terminals disks and tapes physical memory
o b
V|
Operating System Concepts — 8" Edition 2.29 Silberschatz, Galvin and Gagne ©2009
™
p—

- UNIX

® UNIX — limited by hardware functionality, the original UNIX operating
system had limited structuring.

® The UNIX OS consists of two separable parts
e System programs
e The kernel

» Consists of everything below the system-call interface and
above the physical hardware

» Provides the file system, CPU scheduling, memory management,
and other operating-system functions
(a large number of functions for one level)

(slide modified by R. Doemer, 04/01/10) .. b B
Operating System Concepts — 81" Edition 2.30 Silberschatz, Galvin and Gagne ©2009

r) Layered Operating System
" layerN T~
7 user interface e
.
¥ i = \\
// T = \
! / 7 layer 1 A \\
llII.l Il,d/ = \ \', |'|I
' [layer0
I '.\ | hardware ‘
I'u I|I N A |l,|
\ \\ \‘\\ ot 4 / .-“’;
\\ k N4 4 f
N 7 /
\ _\ y 3
Operating System Concepts — 8" Edition 2.31 Silberschatz, Galvin and Gagne ©200§
.
r.d System Boot

m Operating system must be made available to hardware
so hardware can start it

e Bootstrap loader
» Locates the kernel, loads it into memory, and starts it
» Small piece of code

e Sometimes two-step process where boot block at fixed location
loads bootstrap loader

e When power initialized on system, execution starts
at a fixed memory location

» Firmware used to hold initial boot code

(slide modified by R. Doemer, 04/01/10) .. [:*

Operating System Concepts — 81" Edition 2.32 Silberschatz, Galvin and Gagne ©2009

End of Chapter 2

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

