
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 3: Processes

(slides selected/reordered/modified by R. Doemer, 04/06/10)

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

 Examples of IPC Systems

 Communication in Client-Server Systems

(slide modified by R. Doemer, 04/06/10)

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process –
a program in execution,
which forms the basis of all computation

 To describe the various features of processes,
including scheduling, creation and termination, and communication

 To describe communication in client-server systems

(slide modified by R. Doemer, 04/02/10)

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process:

 a program in execution

 process execution must progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

(slide modified by R. Doemer, 04/02/10)

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory,
ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) –
selects which processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) –
selects which process should be executed next and allocates CPU

(slide modified by R. Doemer, 04/02/10)

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont)

 Short-term scheduler is invoked very frequently (milliseconds)
 (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes)
 (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;
few very long CPU bursts

(slide modified by R. Doemer, 04/02/10)

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process,
the system must save the state of the old process and
load the saved state for the new process via a context switch

 Context of a process is represented in the PCB

 Context-switch time is overhead;
the system does no useful work while switching

 Context-switch time is dependent on hardware support

(slide modified by R. Doemer, 04/02/10)

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create child processes,
which, in turn create other processes, forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing options:

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options:

 Parent and children execute concurrently

 Parent waits until children terminate

(slide modified by R. Doemer, 04/02/10)

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont)

 Address space options:

 Child is a duplicate of parent

 Child has a program loaded into it

 UNIX example

 fork system call creates new process
(as an almost identical copy of the parent)

 exec system call is used after a fork
to replace the process’ memory space with a new program (from disk)

 wait system call allows parent to wait for child completion

(slide modified by R. Doemer, 04/02/10)

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Unix

(slide modified by R. Doemer, 04/02/10)

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking a Child Process

int main()
{

pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf ("Child Complete");

}
return 0;

}

(slide modified by R. Doemer, 04/02/10)

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A tree of processes on a typical Solaris system

(slide modified by R. Doemer, 04/02/10)

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement (returns from main()), or
asks the operating system to delete it (exit)

 Output status from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue
if its parent terminates

– All children terminated - cascading termination

(slide modified by R. Doemer, 04/02/10)

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,
including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

(slide modified by R. Doemer, 04/02/10)

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inter-Process Communications Models

(slide modified by R. Doemer, 04/02/10)

Message Passing Shared Memory

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes

 Producer process produces information that is consumed by a
consumer process

 Unbounded-buffer places no practical limit on the size of the
buffer

 Bounded-buffer assumes that there is a fixed buffer size

 EECS111 Note:

 We will not discuss the bounded buffer implementation here
because it requires proper synchronization

 We will postpone this until the discussion of
process synchronization (Chapter 6)

(slide modified by R. Doemer, 04/06/10)

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and synchronize their actions

 Message system

 processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

(slide modified by R. Doemer, 04/06/10)

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be
between every pair of communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate
fixed or variable?

 Is a link unidirectional or bi-directional?

(slide modified by R. Doemer, 04/06/10)

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

(slide modified by R. Doemer, 04/06/10)

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Indirect Communication

 Messages are directed and received from mailboxes
(also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

(slide modified by R. Doemer, 04/06/10)

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Indirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

(slide modified by R. Doemer, 04/06/10)

3.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

(slide modified by R. Doemer, 04/06/10)

3.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing: Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is
received

 Blocking receive has the receiver block until a message is
available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and
continue

 Non-blocking receive has the receiver receive a valid message
or null

(slide modified by R. Doemer, 04/06/10)

3.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing: Buffering

 Queue of messages attached to the link;
implemented in one of three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

(slide modified by R. Doemer, 04/06/10)

3.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems - POSIX

 POSIX Shared Memory (adjusted for EECS111 Solaris servers)

 Process first creates a shared memory segment

int sid = shmget(IPC PRIVATE, size, SHM_R | SHM_W);

 Process wanting access to that shared memory must attach to it

void *shm = shmat(sid, NULL, 0);

 Now the process could write to the shared memory

sprintf(shm, "Writing to shared memory");

 When done, a process should

(1) detach the shared memory from its address space, and
shmdt(shm);

(2) release the shared memory segment
shmctl(sid, IPC_RMID, NULL);

(slide modified by R. Doemer, 04/06/10)

3.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems – Windows XP

 Message-passing centric via local procedure call (LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain communication
channels

 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object

 The client sends a connection request

 The server creates two private communication ports and returns the
handle to one of them to the client

 The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies

3.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Local Procedure Calls in Windows XP

3.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

3.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625
refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

(slide modified by R. Doemer, 04/06/10)

3.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Socket Communication

3.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Remote Procedure Calls

 Remote procedure call (RPC)
abstracts procedure calls between processes on networked systems

 Stubs – client- and server-side proxies for handling the actual procedure

 The client-side stub locates the server,
marshalls and packs the parameters, and
sends a message to the server

 The server-side stub receives the message,
unpacks the marshalled parameters, and
performs the procedure on the server

 Result values are returned to the client the same way

 If port numbers are not fixed beforehand,
a matchmaker is used to negotiate ports

(slide modified by R. Doemer, 04/06/10)

3.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Execution of RPC

3.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Remote Method Invocation in Java

 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

 RMI allows a Java program on one machine to invoke a method on a
remote object

(slide modified by R. Doemer, 04/06/10)

3.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Marshalling Parameters (Java RMI)

(slide modified by R. Doemer, 04/06/10)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 3

