Chapter 3: Processes
| |

u&'ﬁ?u‘."&iﬁ)

JAN

(slides selected/reordered/modified by R. Doemer, 04/06/10)

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

r & Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

Communication in Client-Server Systems

-
(slide modified by R. Doemer, 04/06/10) .. 1.*
Operating System Concepts — 81" Edition 3.2 Silberschatz, Galvin and Gagne ©2009

r & Objectives

® To introduce the notion of a process —
a program in execution,
which forms the basis of all computation

m To describe the various features of processes,
including scheduling, creation and termination, and communication

® To describe communication in client-server systems

™

(slide modified by R. Doemer, 04/02/10)
Operating System Concepts — 8" Edition 3.3 Silberschatz, Galvin and Gagne ©2009

(0%

r & Process Concept

B An operating system executes a variety of programs:

e Batch system — jobs

e Time-shared systems — user programs or tasks

Textbook uses the terms job and process almost interchangeably

m Process:

e a program in execution

e process execution must progress in sequential fashion
m A process includes:

e program counter

e stack

e data section

[

(slide modified by R. Doemer, 04/02/10) hr
Operating System Concepts — 81" Edition 3.4 Silberschatz, Galvin and Gagne ©2009

™

&._-:,,.__f.., Process in Memory

max
stack

heap

data

text

Operating System Concepts — 8" Edition 3.5 Silberschatz, Galvin and Gagne ©2009

™

(]
r.d] Process State

B As a process executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a processor
e terminated: The process has finished execution

Operating System Concepts — 81" Edition 3.6 Silberschatz, Galvin and Gagne ©2009

admitted

interrupt exit terminated

scheduler dispatch

/O or event completion I/O or event wait

o)

Operating System Concepts — 8" Edition 3.7 Silberschatz, Galvin and Gagne ©2009

™,

“%*’ Process Control Block (PCB)

Information associated with each process
Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

1/0 status information

Operating System Concepts — 81" Edition 3.8 Silberschatz, Galvin and Gagne ©2009

™

*\J

“%7’ Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

Operating System Concepts — 8" Edition

3.9

@a !

Silberschatz, Galvin and Gagne ©2009

—

B

“»”/ CPU Switch From Process to Process

process P,

executing J l

\

ridle

operating system

interrupt or system call

save state into PCB,

0
.
.

reload state from PCB, |}

interrupt or system call

v
save slate into PCB,

reload state from PCB,
executing][\

process P,

idle

executing

idle

Operating System Concepts — 8 Edition

—

Silberschatz, Galvin and Gagne ©2009

™.

“%”/ Process Scheduling Queues

Job queue — set of all processes in the system

m Ready queue — set of all processes residing in main memory,
ready and waiting to execute

Device queues — set of processes waiting for an 1/0 device
Processes migrate among the various queues

Operating System Concepts — 8" Edition 3.11 Silberschatz, Galvin and Gagne ©2009

P e
‘-“'ji_,"” Ready Queue And Various I/O Device Queues

queue header PCB, PCB,
ready head N =
queue tail registers registers
- -
- -

mag [head 34—
tape - =
unit 0 tail +——=

mag [head +—a

Jlepe | TR PCB, PCB,, PCB,
/ —_ [— -—
disk head 4
unit 0 tail
PCBg

terminal head —=
unit 0 tail +—

-

L]

Operating System Concepts — 81" Edition 3.12 Silberschatz, Galvin and Gagne ©2009

o

“%”’ Representation of Process Scheduling

f ready queue »{ CPU [

/O queue < /O request [«
time slice .
expired
child fork a
executes child
interrupt wait for an
occurs interrupt
LD
o - \
Operating System Concepts — 8" Edition 3.13 Silberschatz, Galvin and Gagne ©2009
™
Tk J
r Schedulers

m Long-term scheduler (or job scheduler) —
selects which processes should be brought into the ready queue

m Short-term scheduler (or CPU scheduler) —
selects which process should be executed next and allocates CPU

£
A8
(slide modified by R. Doemer, 04/02/10) .. %

Operating System Concepts — 81" Edition 3.14 Silberschatz, Galvin and Gagne ©2009

—

sk,-:,}";‘f Schedulers (Cont)

m Short-term scheduler is invoked very frequently (milliseconds)
= (must be fast)

m Long-term scheduler is invoked very infrequently (seconds, minutes)
= (may be slow)

The long-term scheduler controls the degree of multiprogramming
m Processes can be described as either:

e |/O-bound process — spends more time doing I/O than
computations, many short CPU bursts

e CPU-bound process — spends more time doing computations;
few very long CPU bursts

(slide modified by R. Doemer, 04/02/10) .| T+
Operating System Concepts — 8" Edition 3.15 Silberschatz, Galvin and Gagne ©2009

r & Context Switch

m When CPU switches to another process,
the system must save the state of the old process and
load the saved state for the new process via a context switch

Context of a process is represented in the PCB

Context-switch time is overhead;
the system does no useful work while switching

m Context-switch time is dependent on hardware support

A

[P

(slide modified by R. Doemer, 04/02/10)
Operating System Concepts — 81" Edition 3.16 Silberschatz, Galvin and Gagne ©2009

"**5,-" Process Creation

m Parent process create child processes,
which, in turn create other processes, forming a tree of processes

m Generally, process identified and managed via a process identifier (pid)

B Resource sharing options:
e Parent and children share all resources
e Children share subset of parent’s resources
e Parent and child share no resources

m Execution options:
e Parent and children execute concurrently
e Parent waits until children terminate
£
A v*!»;_ b
(slide modified by R. Doemer, 04/02/10) .| T.*
Operating System Concepts — 8" Edition 3.17 Silberschatz, Galvin and Gagne ©2009

™,

|

r & Process Creation (Cont)

m Address space options:
e Child is a duplicate of parent
e Child has a program loaded into it

m UNIX example

e fork system call creates new process
(as an almost identical copy of the parent)

e exec system call is used after a fork
to replace the process’ memory space with a new program (from disk)

e wait system call allows parent to wait for child completion

(slide modified by R. Doemer, 04/02/10) .. L.
Operating System Concepts — 81" Edition 3.18 Silberschatz, Galvin and Gagne ©2009

[P

™

- Process Creation in Unix

parent /"f

resumes

(slide modified by R. Doemer, 04/02/10)
Operating System Concepts — 8" Edition 3.19 Silberschatz, Galvin and Gagne ©2009

B

“»7 C Program Forking a Child Process

int mainQ)

{
pid_t pid;

/* fork another process */

pid = forkQ);

if (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

else if (pid == 0) { /* child process */
execlp("'/bin/l1s™, "Is", NULL);

3

else { /* parent process */
/* parent will wait for the child to complete */
wait(NULL);
printf ('Child Complete™);

}

return 0;

(slide modified by R. Doemer, 04/02/10)
Operating System Concepts — 81" Edition 3.20 Silberschatz, Galvin and Gagne ©2009

™

“":*;"’A tree of processes on atypical Solaris system

Metscape I emacs
pid = 8105

pid = 7785

(slide modified by R. Doemer, 04/02/10) b}
Operating System Concepts — 8" Edition 3.21 Silberschatz, Galvin and Gagne ©2009

r &) Process Termination

m Process executes last statement (returns from main()), or
asks the operating system to delete it (exit)

e Output status from child to parent (via wait)

e Process’ resources are deallocated by operating system
m Parent may terminate execution of children processes (abort)

e Child has exceeded allocated resources

e Task assigned to child is no longer required

e If parent is exiting

» Some operating system do not allow child to continue
if its parent terminates

All children terminated - cascading termination

(slide modified by R. Doemer, 04/02/10)
Operating System Concepts — 81" Edition 3.22 Silberschatz, Galvin and Gagne ©2009

Interprocess Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data

m Reasons for cooperating processes:
e Information sharing
e Computation speedup
e Modularity
e Convenience

Cooperating processes need interprocess communication (IPC)
Two models of IPC

e Shared memory

e Message passing

_— g A
(slide modified by R. Doemer, 04/02/10) . T+

Operating System Concepts — 8" Edition 3.23 Silberschatz, Galvin and Gagne ©2009

™

‘---’},_rr*iter-Process Communications Models

process A | M process A

ML

shared ﬂ
2

process B | M process B =l

2 1
kernel | M g kernel
(a) (b)
Message Passing Shared Memory e
(slide modified by R. Doemer, 04/02/10) .. b B

Operating System Concepts — 81" Edition 3.24 Silberschatz, Galvin and Gagne ©2009

™

.

=%’ Producer-Consumer Problem

m Paradigm for cooperating processes

e Producer process produces information that is consumed by a
consumer process

e Unbounded-buffer places no practical limit on the size of the
buffer

e Bounded-buffer assumes that there is a fixed buffer size

® EECS111 Note:

e We will not discuss the bounded buffer implementation here
because it requires proper synchronization

e We will postpone this until the discussion of
process synchronization (Chapter 6)

(slide modified by R. Doemer, 04/06/10)

Operating System Concepts — 8" Edition 3.25 Silberschatz, Galvin and Gagne ©2009

.
) Y
bt / . . .

*;" Interprocess Communication — Message Passing

m Mechanism for processes to communicate and synchronize their actions
Message system

e processes communicate with each other
without resorting to shared variables

m |PC facility provides two operations:
e send(message) — message size fixed or variable
e receive(message)
m If P and Q wish to communicate, they need to:
e establish a communication link between them
e exchange messages via send/receive
® Implementation of communication link
e physical (e.g., shared memory, hardware bus)
e logical (e.g., logical properties)

/"’“\‘

i v“l»_‘ |

(slide modified by R. Doemer, 04/06/10) .. ':
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8 Edition 3.26

- Message Passing:
Implementation Questions

|

| ':5."’

How are links established?
Can a link be associated with more than two processes?

How many links can there be
between every pair of communicating processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate
fixed or variable?

® [s a link unidirectional or bi-directional?

<

(slide modified by R. Doemer, 04/06/10) .. L.
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 3.27
P Message Passing:
ke *)

Direct Communication

B Processes must name each other explicitly:
e send (P, message) — send a message to process P
e receive(Q, message) — receive a message from process Q
m Properties of communication link
e Links are established automatically
e Alink is associated with exactly one pair of communicating processes
e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

(slide modified by R. Doemer, 04/06/10) .. L.*

Operating System Concepts — 81" Edition 3.28 Silberschatz, Galvin and Gagne ©2009

= Y Message Passing:

»5 =/ . . .
(< Indirect Communication
m Messages are directed and received from mailboxes
(also referred to as ports)
e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox
m Properties of communication link
e Link established only if processes share a common mailbox
e Alink may be associated with many processes
e Each pair of processes may share several communication links
e Link may be unidirectional or bi-directional
AN
5 5
(slide modified by R. Doemer, 04/06/10) .. %
Operating System Concepts — 8" Edition 3.29 Silberschatz, Galvin and Gagne ©2009
;. . .
§ =k E Message Passing:
| @ *)

Indirect Communication

m Operations
e create a new mailbox
e send and receive messages through mailbox
e destroy a mailbox
m Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

(slide modified by R. Doemer, 04/06/10) .. L.*

Operating System Concepts — 81" Edition 3.30 Silberschatz, Galvin and Gagne ©2009

POt 1 Message Passing:
r Indirect Communication

® Mailbox sharing
e P,, P,, and P, share mailbox A
e P,, sends; P, and P, receive
e Who gets the message?
m Solutions
e Allow a link to be associated with at most two processes
e Allow only one process at a time to execute a receive operation

e Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

<

(slide modified by R. Doemer, 04/06/10) .. L.
3.31 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition

=

\ -‘-‘J - - . .
“%”’Message Passing: Synchronization

m Message passing may be either blocking or non-blocking
m Blocking is considered synchronous

e Blocking send has the sender block until the message is
received

e Blocking receive has the receiver block until a message is
available

® Non-blocking is considered asynchronous

e Non-blocking send has the sender send the message and
continue

e Non-blocking receive has the receiver receive a valid message
or null

(slide modified by R. Doemer, 04/06/10) .. L.*

Operating System Concepts — 81" Edition 3.32 Silberschatz, Galvin and Gagne ©2009

™

oy

“%7/ Message Passing: Buffering

® Queue of messages attached to the link;
implemented in one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

(slide modified by R. Doemer, 04/06/10)
Operating System Concepts — 8" Edition 3.33 Silberschatz, Galvin and Gagne ©2009

P

b
LN

.-

oy

“$7/ Examples of IPC Systems - POSIX

m POSIX Shared Memory (adjusted for EECS111 Solaris servers)
e Process first creates a shared memory segment
int sid = shmget(IPC PRIVATE, size, SHM_R | SHM_W);
e Process wanting access to that shared memory must attach to it
void *shm = shmat(sid, NULL, 0);
e Now the process could write to the shared memory
sprintf(shm, "Writing to shared memory');

e When done, a process should
(1) detach the shared memory from its address space, and
shmdt(shm);
(2) release the shared memory segment
shmctl(sid, IPC_RMID, NULL);

[P

(slide modified by R. Doemer, 04/06/10)
Operating System Concepts — 81" Edition 3.34 Silberschatz, Galvin and Gagne ©2009

=

.

"'*" Examples of IPC Systems — Windows XP

m Message-passing centric via local procedure call (LPC) facility
e Only works between processes on the same system

e Uses ports (like mailboxes) to establish and maintain communication
channels

e Communication works as follows:
» The client opens a handle to the subsystem’s connection port object
» The client sends a connection request

» The server creates two private communication ports and returns the
handle to one of them to the client

» The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies

T .v‘k,-._
L LY
Operating System Concepts — 8" Edition 3.35 Silberschatz, Galvin and Gagne ©2009
=
|

“#7/ Local Procedure Calls in Windows XP

Client Server
Connection
request _| Connection Handle
& Port a
Handle Client

A

Communication Port

(i

Server Handla
Communication Port

Shared
Section Object
(= = 256 bytes)

k

=1
@

Operating System Concepts — 81" Edition 3.36 Silberschatz, Galvin and Gagne ©20

™

“"}f" Communications in Client-Server Systems

B Sockets
B Remote Procedure Calls
m Remote Method Invocation (Java)

Operating System Concepts — 8" Edition 3.37 Silberschatz, Galvin and Gagne ©20

™,

¥ & Sockets

A socket is defined as an endpoint for communication
Concatenation of IP address and port

The socket 161.25.19.8:1625
refers to port 1625 on host 161.25.19.8

® Communication consists between a pair of sockets

ad

(slide modified by R. Doemer, 04/06/10)
Operating System Concepts — 81" Edition 3.38 Silberschatz, Galvin and Gagne ©2009

]

™

i ""‘J = .
. &1 Socket Communication
host X
(146.86.5.20)
socket
(146.86.5.20:1625)
web server
(161.25.19.8)
socket
(161.25.19.8:80)
e

Operating System Concepts — 8" Edition 3.39 Silberschatz, Galvin and Gagn; ©2()-;§

& ...--.:"“J' h

> Remote Procedure Calls

m Remote procedure call (RPC)
abstracts procedure calls between processes on networked systems

Stubs — client- and server-side proxies for handling the actual procedure

The client-side stub locates the server,
marshalls and packs the parameters, and
sends a message to the server

B The server-side stub receives the message,
unpacks the marshalled parameters, and
performs the procedure on the server

m Result values are returned to the client the same way

m |f port numbers are not fixed beforehand,
a matchmaker is used to negotiate ports

(slide modified by R. Doemer, 04/06/10) .. [.:*
Operating System Concepts — 81" Edition 3.40 Silberschatz, Galvin and Gagne ©2009

client messages sarver
user calls kernel
o send RPC
1o
dure X
| -‘H-‘\
karnel sends / R o/ ‘matchmaker
10 Pt eCaNes
nalchmakes o Ro: addiess Messags, looks
find port numbser _for RPC X up answer
Rt l
me samer
kermnel places To: client matchmaker
port Pin user Port: kemel roplies to client
RPC message R@ RFC X with port P
F:c-m dlem daamaon
kernel sends To: server listening 1o
RPC Paort: port P port P receives
<conlents: message
From: HPC [dagmon
kernel receives Port: P PIOCESSes
reply, passen To: client roquest and
it 1o user Port: kamel processes send
_ =output> louput | et
- — _/
— "A&\H‘-
Operating System Concepts — 8 Edition 3.41 Silberschatz, Galvin and Gagne ©2009
h

“-'v’ Remote Method Invocation in Java

® Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

® RMI allows a Java program on one machine to invoke a method on a
remote object

JVM

JVM
Java @

program

"emot
e method fnvocaﬁo

® remote
object

-

(slide modified by R. Doemer, 04/06/10)
Operating System Concepts — 8" Edition 3.42 Silberschatz, Galvin and Gagne ©2009

™

“#»7/Marshalling Parameters (Java RMI)

client remote object

val = server.someMethod(A,B) boolean someMethod (Object x, Object y)

{

implementation of someMethod

)

l stub ‘ |ske|eton|

3

‘ A, B, someMethod ‘

‘ boolean return value ‘

.
e

(slide modified by R. Doemer, 04/06/10) ..
Operating System Concepts — 8" Edition 3.43 Silberschatz, Galvin and Gagne ©2009

End of Chapter 3

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

