
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 3: Processes

(slides selected/reordered/modified by R. Doemer, 04/06/10)

3.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 3: Processes

 Process Concept

 Process Scheduling

 Operations on Processes

 Interprocess Communication

 Examples of IPC Systems

 Communication in Client-Server Systems

(slide modified by R. Doemer, 04/06/10)

3.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a process –
a program in execution,
which forms the basis of all computation

 To describe the various features of processes,
including scheduling, creation and termination, and communication

 To describe communication in client-server systems

(slide modified by R. Doemer, 04/02/10)

3.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process:

 a program in execution

 process execution must progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

(slide modified by R. Doemer, 04/02/10)

3.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process in Memory

3.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Diagram of Process State

3.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

3.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Control Block (PCB)

3.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory,
ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

3.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Ready Queue And Various I/O Device Queues

3.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Representation of Process Scheduling

3.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers

 Long-term scheduler (or job scheduler) –
selects which processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) –
selects which process should be executed next and allocates CPU

(slide modified by R. Doemer, 04/02/10)

3.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schedulers (Cont)

 Short-term scheduler is invoked very frequently (milliseconds)
 (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes)
 (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing computations;
few very long CPU bursts

(slide modified by R. Doemer, 04/02/10)

3.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Context Switch

 When CPU switches to another process,
the system must save the state of the old process and
load the saved state for the new process via a context switch

 Context of a process is represented in the PCB

 Context-switch time is overhead;
the system does no useful work while switching

 Context-switch time is dependent on hardware support

(slide modified by R. Doemer, 04/02/10)

3.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation

 Parent process create child processes,
which, in turn create other processes, forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing options:

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options:

 Parent and children execute concurrently

 Parent waits until children terminate

(slide modified by R. Doemer, 04/02/10)

3.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation (Cont)

 Address space options:

 Child is a duplicate of parent

 Child has a program loaded into it

 UNIX example

 fork system call creates new process
(as an almost identical copy of the parent)

 exec system call is used after a fork
to replace the process’ memory space with a new program (from disk)

 wait system call allows parent to wait for child completion

(slide modified by R. Doemer, 04/02/10)

3.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Creation in Unix

(slide modified by R. Doemer, 04/02/10)

3.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

C Program Forking a Child Process

int main()
{

pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait(NULL);
printf ("Child Complete");

}
return 0;

}

(slide modified by R. Doemer, 04/02/10)

3.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

A tree of processes on a typical Solaris system

(slide modified by R. Doemer, 04/02/10)

3.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Process Termination

 Process executes last statement (returns from main()), or
asks the operating system to delete it (exit)

 Output status from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue
if its parent terminates

– All children terminated - cascading termination

(slide modified by R. Doemer, 04/02/10)

3.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,
including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

(slide modified by R. Doemer, 04/02/10)

3.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inter-Process Communications Models

(slide modified by R. Doemer, 04/02/10)

Message Passing Shared Memory

3.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes

 Producer process produces information that is consumed by a
consumer process

 Unbounded-buffer places no practical limit on the size of the
buffer

 Bounded-buffer assumes that there is a fixed buffer size

 EECS111 Note:

 We will not discuss the bounded buffer implementation here
because it requires proper synchronization

 We will postpone this until the discussion of
process synchronization (Chapter 6)

(slide modified by R. Doemer, 04/06/10)

3.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and synchronize their actions

 Message system

 processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

(slide modified by R. Doemer, 04/06/10)

3.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be
between every pair of communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate
fixed or variable?

 Is a link unidirectional or bi-directional?

(slide modified by R. Doemer, 04/06/10)

3.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

(slide modified by R. Doemer, 04/06/10)

3.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Indirect Communication

 Messages are directed and received from mailboxes
(also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

(slide modified by R. Doemer, 04/06/10)

3.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Indirect Communication

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from mailbox A

(slide modified by R. Doemer, 04/06/10)

3.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing:
Indirect Communication

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

(slide modified by R. Doemer, 04/06/10)

3.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing: Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is
received

 Blocking receive has the receiver block until a message is
available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and
continue

 Non-blocking receive has the receiver receive a valid message
or null

(slide modified by R. Doemer, 04/06/10)

3.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Message Passing: Buffering

 Queue of messages attached to the link;
implemented in one of three ways

1. Zero capacity – 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

(slide modified by R. Doemer, 04/06/10)

3.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems - POSIX

 POSIX Shared Memory (adjusted for EECS111 Solaris servers)

 Process first creates a shared memory segment

int sid = shmget(IPC PRIVATE, size, SHM_R | SHM_W);

 Process wanting access to that shared memory must attach to it

void *shm = shmat(sid, NULL, 0);

 Now the process could write to the shared memory

sprintf(shm, "Writing to shared memory");

 When done, a process should

(1) detach the shared memory from its address space, and
shmdt(shm);

(2) release the shared memory segment
shmctl(sid, IPC_RMID, NULL);

(slide modified by R. Doemer, 04/06/10)

3.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of IPC Systems – Windows XP

 Message-passing centric via local procedure call (LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain communication
channels

 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object

 The client sends a connection request

 The server creates two private communication ports and returns the
handle to one of them to the client

 The client and server use the corresponding port handle to send
messages or callbacks and to listen for replies

3.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Local Procedure Calls in Windows XP

3.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

3.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625
refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

(slide modified by R. Doemer, 04/06/10)

3.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Socket Communication

3.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Remote Procedure Calls

 Remote procedure call (RPC)
abstracts procedure calls between processes on networked systems

 Stubs – client- and server-side proxies for handling the actual procedure

 The client-side stub locates the server,
marshalls and packs the parameters, and
sends a message to the server

 The server-side stub receives the message,
unpacks the marshalled parameters, and
performs the procedure on the server

 Result values are returned to the client the same way

 If port numbers are not fixed beforehand,
a matchmaker is used to negotiate ports

(slide modified by R. Doemer, 04/06/10)

3.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Execution of RPC

3.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Remote Method Invocation in Java

 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

 RMI allows a Java program on one machine to invoke a method on a
remote object

(slide modified by R. Doemer, 04/06/10)

3.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Marshalling Parameters (Java RMI)

(slide modified by R. Doemer, 04/06/10)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 3

