
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 4: Threads

(slides selected/reordered/modified by R. Doemer, 04/15/10)

4.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

 Overview

 Multithreading Models

 Thread Libraries

 Threading Issues

 Operating System Examples

 Windows XP Threads

 Linux Threads

(slide modified by R. Doemer, 04/15/10)

4.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a thread —
a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems

 To discuss the APIs for the Pthread thread library
(for EECS111, we will skip Win32 and Java thread APIs)

 To examine issues related to multithreaded programming

(slide modified by R. Doemer, 04/15/10)

4.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

(slide modified by R. Doemer, 04/15/10)

4.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

(slide modified by R. Doemer, 04/15/10)

4.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Benefits of Multi-Threading

 Responsiveness

 Application can still continue to “run”
while some of its threads are “busy”
(e.g. blocked in system-calls for I/O)

 Resource Sharing

 Threads share most of the resources of their process

 Economy

 Threads are “cheaper” to manage than processes

 Scalability

 Threads can utilize available multi-core hardware
(see next slide)

(slide modified by R. Doemer, 04/15/10)

4.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Core Programming

 Multi-core systems offer scalability, but at the same time,
are putting pressure on programmers

 Challenges include

 Dividing activities

 Balancing

 Data splitting

 Data dependency

 Testing and debugging

 We may need an entirely new approach to design parallel software!

(slide modified by R. Doemer, 04/15/10)

4.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Core Programming

 Concurrent Execution on a Single-core System

 Parallel Execution on a Multi-core System

(slide modified by R. Doemer, 04/15/10)

4.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Server Architecture

4.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

 User Threads
 Thread management done by user-level threads library

 OS kernel is un-aware of user-level threads

 Kernel Threads
 Supported by the Kernel

 Examples

Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

Mac OS X

(slide modified by R. Doemer, 04/15/10)

4.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

 User-level threads can be mapped to kernel threads
in different ways:

 Many-to-One Model

 One-to-One Model

 Many-to-Many Model

(slide modified by R. Doemer, 04/15/10)

4.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: Many-to-One Model

 Many user-level threads mapped to single kernel thread

 Examples

 Solaris Green Threads

 GNU Portable Threads
(slide modified by R. Doemer, 04/15/10)

4.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: One-to-One Model

 Each user-level thread maps to a kernel thread

 Examples

 Windows NT/XP/2000

 Linux

 Solaris 9 and later

(slide modified by R. Doemer, 04/15/10)

4.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: Many-to-Many Model

 Many user level threads mapped to many kernel threads

 Allows the OS to create a “sufficient” number of kernel threads

 Examples

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

(slide modified by R. Doemer, 04/15/10)

4.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: Two-level Model

 Similar to Many-to-Many Model,
except that it allows a user thread to be bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier (slide modified by R. Doemer, 04/15/10)

4.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Libraries

 Thread library provides programmer with API
for creating and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

 Examples of primary thread libraries

 POSIX Pthreads

 Win32 threads

 Java threads

(slide modified by R. Doemer, 04/15/10)

4.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads

 May be provided either as user-level or kernel-level threads

 A POSIX standard (IEEE 1003.1c) API
for thread creation and synchronization

 API specifies behavior of the thread library,
implementation is up to development of the library

 Common in UNIX operating systems

 Solaris

 Linux

 Mac OS X

(slide modified by R. Doemer, 04/15/10)

4.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example

 Textbook Figure 4.9 (page 161)

#include<pthread.h>
#include<stdio.h>
#include <stdlib.h> //added

int sum; /* this data is shared by the threads */

/* the thread will begin control in this function */

void *runner(void *param)
{

int i, upper = atoi(param);
sum = 0;

for (i=1; i<=upper; i++)
sum += i;

pthread_exit(0);
return 0;

}

...
(slide added by R. Doemer, 04/15/10)

4.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example (continued)
...
int main(int argc, char *argv[])
{

pthread_t tid; /*the thread identifier*/
pthread_attr_t attr; /*set of thread attributes*/

if(argc!=2){
fprintf(stderr, "usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1])<0){

fprintf(stderr, "%d must be >= 0\n", atoi(argv[1]));
return -1;

}
/*get the default attributes*/
pthread_attr_init(&attr);

/*create the thread*/
pthread_create(&tid, &attr, runner, argv[1]);

/*wait for the thread to exit*/
pthread_join(tid, NULL);

printf("sum = %d\n", sum);
return 0; //added
} (slide added by R. Doemer, 04/15/10)

4.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation

 Asynchronous or deferred

 Signal handling

 Thread pools

 Thread-specific data

(slide modified by R. Doemer, 04/15/10)

4.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: fork() and exec()

 Semantics of fork() and exec() system calls

 Does fork() duplicate

 only the calling thread

 or all threads?

(slide modified by R. Doemer, 04/15/10)

4.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Thread Cancellation

(slide modified by R. Doemer, 04/15/10)

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation
terminates the target thread immediately

may lead to un-collected resources

 Deferred cancellation
target thread periodically checks if it should be cancelled

allows to clean up any open resources

4.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Signal Handling

 Signals are used in UNIX systems to notify a process
that a particular event has occurred

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the process

(slide modified by R. Doemer, 04/15/10)

4.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request
with an existing thread than create a new thread

 Allows the number of threads in the application
to be bound to the size of the pool

(slide modified by R. Doemer, 04/15/10)

4.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Thread-Specific Data

 Allows each thread to have its own copy of data

 Remember, all variables are shared in the process!

 Useful when a thread processes unique data

 Example: transaction-processing system

(slide modified by R. Doemer, 04/15/10)

4.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

 Linux Threads

 Windows XP Threads

(slide modified by R. Doemer, 04/15/10)

4.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task
to share the address space of the parent task (process)

(slide modified by R. Doemer, 04/15/10)

4.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known
as the context of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

4.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 4

