
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 4: Threads

(slides selected/reordered/modified by R. Doemer, 04/15/10)

4.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

 Overview

 Multithreading Models

 Thread Libraries

 Threading Issues

 Operating System Examples

 Windows XP Threads

 Linux Threads

(slide modified by R. Doemer, 04/15/10)

4.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the notion of a thread —
a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems

 To discuss the APIs for the Pthread thread library
(for EECS111, we will skip Win32 and Java thread APIs)

 To examine issues related to multithreaded programming

(slide modified by R. Doemer, 04/15/10)

4.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

(slide modified by R. Doemer, 04/15/10)

4.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

(slide modified by R. Doemer, 04/15/10)

4.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Benefits of Multi-Threading

 Responsiveness

 Application can still continue to “run”
while some of its threads are “busy”
(e.g. blocked in system-calls for I/O)

 Resource Sharing

 Threads share most of the resources of their process

 Economy

 Threads are “cheaper” to manage than processes

 Scalability

 Threads can utilize available multi-core hardware
(see next slide)

(slide modified by R. Doemer, 04/15/10)

4.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Core Programming

 Multi-core systems offer scalability, but at the same time,
are putting pressure on programmers

 Challenges include

 Dividing activities

 Balancing

 Data splitting

 Data dependency

 Testing and debugging

 We may need an entirely new approach to design parallel software!

(slide modified by R. Doemer, 04/15/10)

4.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Core Programming

 Concurrent Execution on a Single-core System

 Parallel Execution on a Multi-core System

(slide modified by R. Doemer, 04/15/10)

4.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Server Architecture

4.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

 User Threads
 Thread management done by user-level threads library

 OS kernel is un-aware of user-level threads

 Kernel Threads
 Supported by the Kernel

 Examples

Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

Mac OS X

(slide modified by R. Doemer, 04/15/10)

4.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

 User-level threads can be mapped to kernel threads
in different ways:

 Many-to-One Model

 One-to-One Model

 Many-to-Many Model

(slide modified by R. Doemer, 04/15/10)

4.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: Many-to-One Model

 Many user-level threads mapped to single kernel thread

 Examples

 Solaris Green Threads

 GNU Portable Threads
(slide modified by R. Doemer, 04/15/10)

4.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: One-to-One Model

 Each user-level thread maps to a kernel thread

 Examples

 Windows NT/XP/2000

 Linux

 Solaris 9 and later

(slide modified by R. Doemer, 04/15/10)

4.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: Many-to-Many Model

 Many user level threads mapped to many kernel threads

 Allows the OS to create a “sufficient” number of kernel threads

 Examples

 Solaris prior to version 9

 Windows NT/2000 with the ThreadFiber package

(slide modified by R. Doemer, 04/15/10)

4.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading: Two-level Model

 Similar to Many-to-Many Model,
except that it allows a user thread to be bound to kernel thread

 Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier (slide modified by R. Doemer, 04/15/10)

4.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Libraries

 Thread library provides programmer with API
for creating and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

 Examples of primary thread libraries

 POSIX Pthreads

 Win32 threads

 Java threads

(slide modified by R. Doemer, 04/15/10)

4.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads

 May be provided either as user-level or kernel-level threads

 A POSIX standard (IEEE 1003.1c) API
for thread creation and synchronization

 API specifies behavior of the thread library,
implementation is up to development of the library

 Common in UNIX operating systems

 Solaris

 Linux

 Mac OS X

(slide modified by R. Doemer, 04/15/10)

4.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example

 Textbook Figure 4.9 (page 161)

#include<pthread.h>
#include<stdio.h>
#include <stdlib.h> //added

int sum; /* this data is shared by the threads */

/* the thread will begin control in this function */

void *runner(void *param)
{

int i, upper = atoi(param);
sum = 0;

for (i=1; i<=upper; i++)
sum += i;

pthread_exit(0);
return 0;

}

...
(slide added by R. Doemer, 04/15/10)

4.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Example (continued)
...
int main(int argc, char *argv[])
{

pthread_t tid; /*the thread identifier*/
pthread_attr_t attr; /*set of thread attributes*/

if(argc!=2){
fprintf(stderr, "usage: a.out <integer value>\n");
return -1;

}
if (atoi(argv[1])<0){

fprintf(stderr, "%d must be >= 0\n", atoi(argv[1]));
return -1;

}
/*get the default attributes*/
pthread_attr_init(&attr);

/*create the thread*/
pthread_create(&tid, &attr, runner, argv[1]);

/*wait for the thread to exit*/
pthread_join(tid, NULL);

printf("sum = %d\n", sum);
return 0; //added
} (slide added by R. Doemer, 04/15/10)

4.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues

 Semantics of fork() and exec() system calls

 Thread cancellation

 Asynchronous or deferred

 Signal handling

 Thread pools

 Thread-specific data

(slide modified by R. Doemer, 04/15/10)

4.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: fork() and exec()

 Semantics of fork() and exec() system calls

 Does fork() duplicate

 only the calling thread

 or all threads?

(slide modified by R. Doemer, 04/15/10)

4.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Thread Cancellation

(slide modified by R. Doemer, 04/15/10)

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation
terminates the target thread immediately

may lead to un-collected resources

 Deferred cancellation
target thread periodically checks if it should be cancelled

allows to clean up any open resources

4.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Signal Handling

 Signals are used in UNIX systems to notify a process
that a particular event has occurred

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific thread to receive all signals for the process

(slide modified by R. Doemer, 04/15/10)

4.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Thread Pools

 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request
with an existing thread than create a new thread

 Allows the number of threads in the application
to be bound to the size of the pool

(slide modified by R. Doemer, 04/15/10)

4.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues: Thread-Specific Data

 Allows each thread to have its own copy of data

 Remember, all variables are shared in the process!

 Useful when a thread processes unique data

 Example: transaction-processing system

(slide modified by R. Doemer, 04/15/10)

4.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

 Linux Threads

 Windows XP Threads

(slide modified by R. Doemer, 04/15/10)

4.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads

 Linux refers to them as tasks rather than threads

 Thread creation is done through clone() system call

 clone() allows a child task
to share the address space of the parent task (process)

(slide modified by R. Doemer, 04/15/10)

4.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

 Implements the one-to-one mapping, kernel-level

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known
as the context of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

4.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 4

