Chapter 5: CPU Scheduling

AN

(slides selected/reordered/modified by R. Doemer, 04/20/10)

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

™.

“»”/ Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Operating Systems Examples

Algorithm Evaluation

_— 3

(slide modified by R. Doemer, 04/20/10) .. %
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.2

iy & Objectives

® To introduce CPU scheduling,
which is the basis for multi-programmed operating systems

m To describe various CPU-scheduling algorithms

To discuss evaluation criteria
for selecting a CPU-scheduling algorithm for a particular system

(slide modified by R. Doemer, 04/20/10)

Operating System Concepts — 8" Edition 5.3 Silberschatz, Galvin and Gagne ©2009

™,

p—

r & Basic Concepts

Maximum CPU utilization obtained with multiprogramming

CPU-I/O Burst Cycle —
Process execution consists of a cycle of

e CPU execution and
e |/O wait
® CPU burst distribution

(slide modified by R. Doemer, 04/20/10) .. L.*

Operating System Concepts — 81" Edition 5.4 Silberschatz, Galvin and Gagne ©2009

™

-f-‘-"'“j)
*“'?‘r_/_'" Alternating Sequence of CPU And I/O Bursts

load store
add store
read from file

CPU burst

wait for 1O 1O burst

store increment
in
write to file

CPU burst

wait for VO 1O burst

load store
add store
read from file

CPU burst

wait for /O 1O burst

:| 8‘
=
—_— A A A

Operating System Concepts — 8 Edition 55 Silberschatz, Galvin and Gagne ©2009

e i
“%”’ Histogram of CPU-burst Times

140 A
120 I\
A

\

g

frequency

3 3
]

na £
(=] o
/__,_.-—-'

0 8 16 24 32 40
burst duration (milliseconds)

B '
15 :
L= (17

Operating System Concepts — 8" Edition 5.6 Silberschatz, Galvin and Gagne ©2009

r & CPU Scheduler

m Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

m CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
Scheduling under 1 and 4 is non-preemptive
All other scheduling is preemptive

£
o v")’__ b
(slide modified by R. Doemer, 04/20/10) .| T+

Operating System Concepts — 8" Edition 5.7 Silberschatz, Galvin and Gagne ©2009

r & Dispatcher

m Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler

m Dispatching involves:
e switching context
e switching to user mode

e jumping to the proper location in the user program
to restart that program

m Dispatch latency

e time it takes for the dispatcher to stop one process and
start another running

[P

(slide modified by R. Doemer, 04/20/10) .. L.
Operating System Concepts — 81" Edition 5.8 Silberschatz, Galvin and Gagne ©2009

g .
%7’ Scheduling Algorithm Criteria
[] CPU utilization
e keep the CPU as busy as possible
[] Throughput
e number of processes that complete their execution per time unit
u Turnaround time
e amount of time to execute a particular process
[Waiting time
e amount of time a process has been waiting in the ready queue
[Response time
e amount of time it takes from when a request was submitted
until the first response is produced (not the time to output result!)
e for time-sharing environment
(slide modified by R. Doemer, 04/20/10) . T
Operating System Concepts — 81 Edition 5.9 Silberschatz, Galvin and Gagne ©2009

=

Y e
\”"*;'Scheduling Algorithm Optimization Criteria

m Maximize CPU utilization
e keep the CPU as busy as possible
® Maximize Throughput
e number of processes that complete their execution per time unit
® Minimize Turnaround time
e amount of time to execute a particular process
® Minimize Waiting time
e amount of time a process has been waiting in the ready queue

® Minimize Response time

e amount of time it takes from when a request was submitted
until the first response is produced (not the time to output result!)

e for time-sharing environment

<

(slide modified by R. Doemer, 04/20/10) .. f

Operating System Concepts — 81" Edition 5.10 Silberschatz, Galvin and Gagne ©2009

P
"‘-”_*_,"First—Come, First-Served (FCFS) Scheduling

Process Burst Time
P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, , P, , P
The Gantt Chart for the schedule is:

P, P, Ps

0 24 27 30
Waiting time for P, =0; P, =24; P,=27
Average waiting time: (0 + 24 + 27)/3 = 17

7

Operating System Concepts — 8" Edition 5.11 Silberschatz, Galvin and Gagne ©20

M

ok
@

™,

|

‘w" FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
P,,P;, P,
The Gantt chart for the schedule is:

P, Ps P,

0 3 6 30
Waiting time for P, = 6;P, =0.P,=3
Average waiting time: (6 +0+3)/3=3

Much better than previous case

Convoy effect short process behind long process

)

[

5

Operating System Concepts — 81" Edition 5.12 Silberschatz, Galvin and Gagne ©20

k

=1
@

j W
“#”/Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst.
Use these lengths to schedule the process with the shortest time.

m SJFis optimal
e SJF gives minimum average waiting time for a given set of processes

m However, there’s a problem:
e The difficulty is knowing the length of the next CPU request...

(slide modified by R. Doemer, 04/20/10) v
Operating System Concepts — 8" Edition 5.13 Silberschatz, Galvin and Gagne ©2009

™,

p—

r & Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P, 3

® SJF scheduling chart

P, P, Ps P,

0 3 9 16 24
B Average waitingtime=(3+16+9+0)/4=7

fa‘"'\\\
(slide fixed by R. Doemer, 01/07/09)

Operating System Concepts — 81" Edition 5.14 Silberschatz, Galvin and Gagne ©2009

> (%

w’f “Estimating Length of Next CPU Burst

m Can only estimate the length!
e Note: Text book calls this estimation prediction.

m Can be done by using the length of previous CPU bursts
e using exponential averaging

1. t, =actual lengthof n' CPU burst

2. 7,4 =predicted value for the next CPU burst
3. 0,0<a<1

4. Define: #ua=at, +(l-a),

T A
e

(slide modified by R. Doemer, 04/21/10)
Operating System Concepts — 8" Edition 5.15 Silberschatz, Galvin and Gagne ©2009

B

“%”/Estimating the Length of the Next CPU Burst

CPU burst (1) 6 4 6 4 13 13 13

"guess’(z) 10 8 6 6 5 0 11 12

(in this example, alpha is 1/2) fx\‘
oA

£
(slide modified by R. Doemer, 04/20/10) .. ':
Operating System Concepts — 81" Edition 5.16 Silberschatz, Galvin and Gagne ©2009

™

PR
“»”’Examples of Exponential Averaging

Thn=0a tn +(1—0{)Tn

m o=0
® Tha T T
e Recent history does not count
B =1
o T.,=af,
e Only the actual last CPU burst counts
m [f we expand the formula, we get:
Ty — ot H(l-a)at, , + ...
+Hl-a)at, ;+..

+(1- o)y,

® Since both o and (1 - o) are less than or equal to 1,
each successive term has less weight than its predecessor

<

(slide modified by R. Doemer, 04/21/10) .. L.
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.17

™,

|

r & Priority Scheduling

m A priority number (an integer) is associated with each process

m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
e Non-preemptive

m SJF is an example of priority scheduling
where priority is the predicted next CPU burst time

B Problem = Starvation
e low priority processes may never execute

m Solution = Aging
e as time progresses, increase the priority of the process

(slide modified by R. Doemer, 04/20/10) .. L.*

Operating System Concepts — 81" Edition 5.18 Silberschatz, Galvin and Gagne ©2009

™

o

=%/ Round Robin (RR) Scheduling

m Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds.

m After this time has elapsed, the process is preempted and
added to the end of the ready queue.

m [f there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once.

No process waits more than (n-1)q time units.
Performance

e (large = RR degenerates to FCFS

e ¢ small = g should be large with respect to context switch,
otherwise overhead is too high

<

(slide modified by R. Doemer, 04/20/10) .. L.
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 5.19

=

e b
%7/ Example of RR with Time Quantum = 4

Process Burst Time
P, 24
P, 3
Py 3

® The Gantt chart is:

Py | Py | P | P | P | P | P | Py

0 4 7 10 14 18 22 26 30

m Typically, higher average turnaround than SJF, but better response

= (%

(slide modified by R. Doemer, 04/20/10) .. [.:»

Operating System Concepts — 81" Edition 5.20 Silberschatz, Galvin and Gagne ©2009

™

““’?/_'" Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9
0o 1 2 3 4 5 6 7 9 10

Operating System Concepts — 8" Edition

5.21

%" .
L

N,

Silberschatz, Galvin and Gagne ©2009

™

i“-*’?;’-»,v"Purnaround Time Varies With The Time Quantum

process | time
125 P 3
12.0 A — P 3
\ P, 1
g 15 P, 7
2 11.0 \ l
2" v |
= |
g 105 +
2 |
2 100
g
g os
9.0
1 2 3 4 5 6 7

Operating System Concepts — 8" Edition

time quantum

Silberschatz, Galvin and Gagne ©2009

™

“»77 Multilevel Queue Scheduling

m Ready queue is partitioned into separate queues
e foreground (interactive)
e background (batch)
m Each queue has its own scheduling algorithm
e foreground — RR
e background — FCFS
m Scheduling must be done between the queues
e Fixed priority scheduling
» i.e., serve all from foreground then from background
» Possibility of starvation.
e Time slice

» each queue gets a certain amount of CPU time which it can
schedule amongst its processes

i.e., 80% to foreground in RR

20% to background in FCFS /,«-\
50
(slide modified by R. Doemer, 04/20/10) b
Operating System Concepts — 8" Edition 5.23 Silberschatz, Galvin and Gagne ©2009

™,

“»7 Multilevel Queue Scheduling

highest priority

system processes

interactive processes

interactive editing processes

batch processes

L1111
e

student processes

lowest priority

Operating System Concepts — 81" Edition 5.24 Silberschatz, Galvin and Gagne ©2009

e

%7 Multilevel Feedback Queue

® A process can move between the various queues
e aging can be implemented this way

® Multilevel-feedback-queue scheduler is defined
by the following parameters:

e number of queues

e scheduling algorithms for each queue

e method used to determine when to upgrade a process
e method used to determine when to demote a process

e method used to determine which queue a process will enter
when that process needs service

M

(slide modified by R. Doemer, 04/20/10) !
Operating System Concepts — 8" Edition 5.25 Silberschatz, Galvin and Gagne ©2009

B

) e .
“%7/ Example of Multilevel Feedback Queue

m Three queues:
e Q,—time quantum 8 milliseconds
e Q, —time quantum 16 milliseconds
e Q,-FCFS
m Scheduling
e Anew job enters queue Qg which is scheduled FCFS.
e When it gains CPU, job receives 8 milliseconds.

If it does not finish in 8 milliseconds, job is moved to queue Q,.

At Q, job is again scheduled FCFS and receives 16 additional
milliseconds.

If it still does not complete, it is preempted and moved to queue Q,.

A

L=

(slide modified by R. Doemer, 04/21/10)
Operating System Concepts — 81" Edition 5.26 Silberschatz, Galvin and Gagne ©2009

b

) _
»77 Multilevel Feedback Queues

- = a
—_— guantum = 8
- N
> quantum = 16
B ~
> FCFS
= r‘",";‘ b
e
Operating System Concepts — 8" Edition 5.27 Silberschatz, Galvin and Gagne ©2009

. d Thread Scheduling

m Distinction between user-level and kernel-level threads

® With many-to-one and many-to-many models,
thread library schedules user-level threads to run on
light-weight processes (LWP)

e Known as process-contention scope (PCS)
since scheduling competition is within the process

m Kernel thread scheduled onto available CPU
is system-contention scope (SCS) —

e competition among all threads in system

ok

(slide modified by R. Doemer, 04/20/10) .. L
Operating System Concepts — 81" Edition 5.28 Silberschatz, Galvin and Gagne ©2009

s |

r & Pthread Scheduling API

m POSIX API allows specifying either PCS or SCS
as thread attribute

e PTHREAD_SCOPE_PROCESS
schedules threads using PCS scheduling

e PTHREAD_SCOPE_SYSTEM
schedules threads using SCS scheduling

m Contention scope can be obtained using
e pthread_attr_getscope(&attr, &scope)

m Contention scope can be set using
e pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS)
e pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM)

iy
. ']
|
(slide modified by R. Doemer, 04/21/10) . 5.

Operating System Concepts — 8" Edition 5.29 Silberschatz, Galvin and Gagne ©2009

™,

|

r & Pthread Scheduling AP

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[l)
{
int i;
pthread_t tid[NUM THREADS];
pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* set the scheduling algorithm to PROCESS or SYSTEM */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* set the scheduling policy - FIFO, RR, or OTHER */

pthread_attr_setschedpolicy(&attr, SCHED_OTHER);

/* create the threads */

for (i = 0; i < NUM_THREADS; i++)
pthread_create(&tid[i],&attr,runner,NULL);

<Th

(slide modified by R. Doemer, 04/21/10) .. [:»
Operating System Concepts — 81" Edition 5.30 Silberschatz, Galvin and Gagne ©2009

"‘"*}:ﬁPthread Scheduling API (continued)

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)
pthread_join(tid[i], NULL);

/* Each thread will begin control in this function */
void *runner(void *param)

printf("'l am a thread\n");
pthread_exit(0);
/,a"\\
< ']
- m)’__ b |
(slide modified by R. Doemer, 04/20/10) .| T+
Operating System Concepts — 8" Edition 5.31 Silberschatz, Galvin and Gagne ©2009

=

Y e) -
“$7/ Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are available
Homogeneous processors within a multiprocessor
Asymmetric multiprocessing —

e only one processor accesses the system data structures,
alleviating the need for data sharing

B Symmetric multiprocessing (SMP) —
e each processor is self-scheduling

e all processes in common ready queue, or
each has its own private queue of ready processes

® Processor affinity —
process has affinity for processor(s) on which it is currently running

e soft affinity: process should run on specified processor(s)
e hard affinity: process must only run on specified processor(s)

A

[P

(slide modified by R. Doemer, 04/20/10)
Operating System Concepts — 81" Edition 5.32 Silberschatz, Galvin and Gagne ©2009

%7/ NUMA and Processor Affinity

® Non-Uniform Memory Access (NUMA)
e A CPU has faster access to some memory than to others

CPU CPU
Sto,
W
fast access &) fast access
~—
memory memory
computer

“-C‘;a:‘
(slide modified by R. Doemer, 04/20/10) .| .
Operating System Concepts — 8" Edition 5.33 Silberschatz, Galvin and Gagne ©2009

55 Multi-Core Processors

m Recent trend to place multiple processor cores on same physical chip
e Typically faster, consumes less power than single-core architecture

m Also, multiple threads per core growing (“hyper-threading”)

e Takes advantage of memory stall to make progress on another thread
while memory retrieve happens

G compute cycle M memory stall cycle

N - KN - KN - i

e Example:

thread

time

(slide modified by R. Doemer, 04/21/10) .. [:»
Operating System Concepts — 81" Edition 5.34 Silberschatz, Galvin and Gagne ©2009

™
el) :
rcd Operating System Examples
m Solaris scheduling
|
|
(slide modified by R. Doemer, 04/21/_1_0)’ h
Operating System Concepts — 8" Edition 5.35 Silberschatz, Galvin and Gagne ©2009

™

**-'}r' Solaris Scheduling

global scheduling
priarity order
169
highest first
ghes interupt threads e
160
159

realtime (RT) threads

100
=]
system (SYS) threads
80
59 | fair share (FSS) threads
tixed priority (FX) threads
timeshare (TS) threads
lowest 0 interactive (A} threads last

Operating System Concepts — 8" Edition 5.36 Silberschatz, Galvin and Gagne ©2009

! Solaris Dispatch Table
time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
L) 160 L 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59
Operating System Concepts — 8" Edition 5.37 Silberschatz, Galvin and Gagne ©205§
™
2 Algorithm Evaluation

m Deterministic modeling

e takes a particular predetermined workload and
defines the performance of each algorithm for that workload

e this has been done in this chapter for the algorithms in the beginning
e Advantages: simple, fast, exact
e Disadvantages: specific case only
B Queueing models
o [skipped]
B Simulation

e see next slide
B Implementation
e Real evaluation, but expensive...

s

(slide modified by R. Doemer, 04/21/10) .. 1.*
Operating System Concepts — 81" Edition 5.38 Silberschatz, Galvin and Gagne ©2009

™

-f-‘-"“J)
“%77 Evaluation of CPU Schedulers by Simulation

process
execution

actual

CPU 10
o 213
CPU 12
o 112
CPU 2
o 147
CPU173

trace tape

Operating System Concepts — 8" Edition

(slide modified

)) performance
simulation = statistics
for FCFS
FCFS
_ _ performance
simulation = statistics
for SJF
SJF
performance
simulation =P statistics
for RR (g = 14)
RR (g = 14)|

by R. Doemer, 04/21/10) . ©.*
Silberschatz, Galvin and Gagne ©2009

End of Chapter 5

Operating System Concepts — 8" Edition,

Silberschatz, Galvin and Gagne ©2009

