
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 5: CPU Scheduling

(slides selected/reordered/modified by R. Doemer, 04/20/10)

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling

 Basic Concepts

 Scheduling Criteria

 Scheduling Algorithms

 Thread Scheduling

 Multiple-Processor Scheduling

 Operating Systems Examples

 Algorithm Evaluation

(slide modified by R. Doemer, 04/20/10)

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce CPU scheduling,
which is the basis for multi-programmed operating systems

 To describe various CPU-scheduling algorithms

 To discuss evaluation criteria
for selecting a CPU-scheduling algorithm for a particular system

(slide modified by R. Doemer, 04/20/10)

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Concepts

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle –
Process execution consists of a cycle of

 CPU execution and

 I/O wait

 CPU burst distribution

(slide modified by R. Doemer, 04/20/10)

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Alternating Sequence of CPU And I/O Bursts

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Histogram of CPU-burst Times

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduler

 Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is non-preemptive

 All other scheduling is preemptive

(slide modified by R. Doemer, 04/20/10)

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler

 Dispatching involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program
to restart that program

 Dispatch latency

 time it takes for the dispatcher to stop one process and
start another running

(slide modified by R. Doemer, 04/20/10)

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithm Criteria

(slide modified by R. Doemer, 04/20/10)

 Maximize CPU utilization

 keep the CPU as busy as possible

 Maximize Throughput

 number of processes that complete their execution per time unit

 Minimize Turnaround time

 amount of time to execute a particular process

 Minimize Waiting time

 amount of time a process has been waiting in the ready queue

 Minimize Response time

 amount of time it takes from when a request was submitted
until the first response is produced (not the time to output result!)

 for time-sharing environment

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithm Optimization Criteria

(slide modified by R. Doemer, 04/20/10)

 Maximize CPU utilization

 keep the CPU as busy as possible

 Maximize Throughput

 number of processes that complete their execution per time unit

 Minimize Turnaround time

 amount of time to execute a particular process

 Minimize Waiting time

 amount of time a process has been waiting in the ready queue

 Minimize Response time

 amount of time it takes from when a request was submitted
until the first response is produced (not the time to output result!)

 for time-sharing environment

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Much better than previous case

 Convoy effect short process behind long process

P1P3P2

63 300

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst.

 Use these lengths to schedule the process with the shortest time.

 SJF is optimal

 SJF gives minimum average waiting time for a given set of processes

 However, there’s a problem:

 The difficulty is knowing the length of the next CPU request…

(slide modified by R. Doemer, 04/20/10)

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of SJF

Process Burst Time

P1 6

P2 8

P3 7

P4 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4
P3P1

3 160 9

P2

24

(slide fixed by R. Doemer, 01/07/09)

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Estimating Length of Next CPU Burst

 Can only estimate the length!

 Note: Text book calls this estimation prediction.

 Can be done by using the length of previous CPU bursts

 using exponential averaging

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.









 1n

th
n nt

  nnn t   1 1

(slide modified by R. Doemer, 04/21/10)

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Estimating the Length of the Next CPU Burst

(slide modified by R. Doemer, 04/20/10)

(in this example, alpha is 1/2)

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Exponential Averaging

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn
 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn-1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1,
each successive term has less weight than its predecessor

  nnn t   1 1

(slide modified by R. Doemer, 04/21/10)

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling

 A priority number (an integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer  highest priority)

 Preemptive

 Non-preemptive

 SJF is an example of priority scheduling
where priority is the predicted next CPU burst time

 Problem  Starvation

 low priority processes may never execute

 Solution  Aging

 as time progresses, increase the priority of the process

(slide modified by R. Doemer, 04/20/10)

5.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (RR) Scheduling

 Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds.

 After this time has elapsed, the process is preempted and
added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once.

 No process waits more than (n-1)q time units.

 Performance

 q large  RR degenerates to FCFS

 q small  q should be large with respect to context switch,
otherwise overhead is too high

(slide modified by R. Doemer, 04/20/10)

5.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

(slide modified by R. Doemer, 04/20/10)

5.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Time Quantum and Context Switch Time

5.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With The Time Quantum

5.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

 Ready queue is partitioned into separate queues

 foreground (interactive)

 background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling

 i.e., serve all from foreground then from background

 Possibility of starvation.

 Time slice

 each queue gets a certain amount of CPU time which it can
schedule amongst its processes

– i.e., 80% to foreground in RR

– 20% to background in FCFS

(slide modified by R. Doemer, 04/20/10)

5.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

5.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue

 A process can move between the various queues

 aging can be implemented this way

 Multilevel-feedback-queue scheduler is defined
by the following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter
when that process needs service

(slide modified by R. Doemer, 04/20/10)

5.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – time quantum 8 milliseconds

 Q1 – time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is scheduled FCFS.

 When it gains CPU, job receives 8 milliseconds.

 If it does not finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again scheduled FCFS and receives 16 additional
milliseconds.

 If it still does not complete, it is preempted and moved to queue Q2.

(slide modified by R. Doemer, 04/21/10)

5.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queues

5.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads

 With many-to-one and many-to-many models,
thread library schedules user-level threads to run on
light-weight processes (LWP)

 Known as process-contention scope (PCS)
since scheduling competition is within the process

 Kernel thread scheduled onto available CPU
is system-contention scope (SCS) –

 competition among all threads in system

(slide modified by R. Doemer, 04/20/10)

5.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthread Scheduling API

 POSIX API allows specifying either PCS or SCS
as thread attribute

 PTHREAD_SCOPE_PROCESS
schedules threads using PCS scheduling

 PTHREAD_SCOPE_SYSTEM
schedules threads using SCS scheduling

 Contention scope can be obtained using

 pthread_attr_getscope(&attr, &scope)

 Contention scope can be set using

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_PROCESS)

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM)

(slide modified by R. Doemer, 04/21/10)

5.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread_t tid[NUM THREADS];
pthread_attr_t attr;

/* get the default attributes */
pthread_attr_init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
/* set the scheduling policy - FIFO, RR, or OTHER */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
/* create the threads */
for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

...

(slide modified by R. Doemer, 04/21/10)

5.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthread Scheduling API (continued)

...

/* now join on each thread */

for (i = 0; i < NUM THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

printf("I am a thread\n");

pthread_exit(0);

}

(slide modified by R. Doemer, 04/20/10)

5.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing –

 only one processor accesses the system data structures,
alleviating the need for data sharing

 Symmetric multiprocessing (SMP) –

 each processor is self-scheduling

 all processes in common ready queue, or
each has its own private queue of ready processes

 Processor affinity –
process has affinity for processor(s) on which it is currently running

 soft affinity: process should run on specified processor(s)

 hard affinity: process must only run on specified processor(s)

(slide modified by R. Doemer, 04/20/10)

5.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NUMA and Processor Affinity

 Non-Uniform Memory Access (NUMA)

 A CPU has faster access to some memory than to others

(slide modified by R. Doemer, 04/20/10)

5.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Core Processors

 Recent trend to place multiple processor cores on same physical chip

 Typically faster, consumes less power than single-core architecture

 Also, multiple threads per core growing (“hyper-threading”)

 Takes advantage of memory stall to make progress on another thread
while memory retrieve happens

 Example:

(slide modified by R. Doemer, 04/21/10)

5.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

(slide modified by R. Doemer, 04/21/10)

5.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Scheduling

5.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Dispatch Table

5.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Algorithm Evaluation

 Deterministic modeling

 takes a particular predetermined workload and
defines the performance of each algorithm for that workload

 this has been done in this chapter for the algorithms in the beginning

 Advantages: simple, fast, exact

 Disadvantages: specific case only

 Queueing models

 [skipped]

 Simulation

 see next slide

 Implementation

 Real evaluation, but expensive…

(slide modified by R. Doemer, 04/21/10)

5.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Evaluation of CPU Schedulers by Simulation

(slide modified by R. Doemer, 04/21/10)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 5

