
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 6:
Process Synchronization

(slides improved by R. Doemer, 04/22/10 – 04/30/10)

6.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 6: Process Synchronization

 Background

 The Producer-Consumer Problem

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

 Pthread Synchronization

 Atomic Transactions

(slide modified by R. Doemer, 04/29/10)

6.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the critical-section problem,
whose solutions can be used to ensure the consistency of shared data

 To present both software and hardware solutions
of the critical-section problem

 To introduce the concept of an atomic transaction
and describe mechanisms to ensure atomicity

(slide modified by R. Doemer, 04/22/10)

6.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Concurrent execution of processes or threads
creates situations of non-determinism!

 CPU scheduling by operating system often (!)
yields non-deterministic order of execution
of concurrent program instructions

 e.g. thread may be preempted at any time (!)

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms
to ensure the orderly execution of cooperating processes

(slide modified by R. Doemer, 04/22/10)

6.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes

 Producer process produces information that is consumed by a
consumer process

 Buffered communication

 Unbounded-buffer places no practical limit on the size of the
buffer

 Bounded-buffer assumes that there is a fixed buffer size

 EECS111 Notes:

 We will discuss the postponed bounded buffer implementation
from chapter 3 here as Version 1

 We will improve this implementation then (in chapter 6)
using better efficiency and synchronization as Version 2 and 3

(slide inserted from chapter 3 and modified by R. Doemer, 04/27/10)

6.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Bounded buffer implementation (Version 1)

 Data in shared memory

(slide inserted from chapter 3 and modified by R. Doemer, 04/23/10)

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE]; /* circular buffer */

int in = 0; /* index of next free position */

int out = 0; /* index of first full position */

6.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Producer implementation (Version 1)

 Produce an item, wait for buffer space, store in buffer

item nextProduced;

while (true) {

/* produce an item and put in nextProduced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

}

(slide modified by R. Doemer, 04/23/10)

6.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Consumer implementation (Version 1)

 Wait for an item available, load it from buffer, consume it

item nextConsumed;

while (true) {

while (in == out)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in nextConsumed */

}

(slide modified by R. Doemer, 04/23/10)

6.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Discussion on Implementation of Version 1
 Data in shared memory

buffer[], in, out

 Busy waiting in both producer and consumer

Empty loops

 Is this a valid / safe implementation?

Variable in only modified by producer

Variable out only modified by consumer

Writing an integer to memory should be atomic

 Is this an efficient implementation?

 (a) Space: At most BUFFER_SIZE–1 items can be stored

 (b) Time: We’ll investigate that in Assignment 3…

(slide modified by R. Doemer, 04/23/10)

6.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Bounded buffer implementation (Version 2)

 Data in shared memory

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE]; /* circular buffer */

int in = 0; /* index of next free position */

int out = 0; /* index of first full position */

int counter = 0; /* number of items in buffer */

(slide modified by R. Doemer, 04/23/10)

6.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Producer implementation (Version 2)

 Produce an item, wait for buffer space, store in buffer

item nextProduced;

while (true) {

/* produce an item and put in nextProduced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

(slide modified by R. Doemer, 04/23/10)

6.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Consumer implementation (Version 2)

 Wait for an item available, load it from buffer, consume it

item nextConsumed;

while (true) {

while (counter == 0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in nextConsumed */

}

(slide modified by R. Doemer, 04/23/10)

6.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Discussion on Implementation of Version 2
 Data in shared memory

buffer[], in, out, counter

 Busy waiting in both producer and consumer

Empty loops

 Is this a valid / safe implementation?

Variable in only modified by producer

Variable out only modified by consumer

Variable counter is modified by both consumer and producer!
=> Race Condition! (see next slide)

 Is this an efficient implementation?

 (a) Space: Now BUFFER_SIZE items can be stored!

 (b) Time: We’ll investigate that in Assignment 4…
(slide modified by R. Doemer, 04/23/10)

6.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Version 2 is not safe!

 A race condition exists: Critical Section Problem!
counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

counter-- could be implemented as
register2 = counter
register2 = register2 - 1
counter = register2

Consider this execution interleaving with counter = 5 initially:
T0: producer executes register1 = counter {register1 = 5}
T1: producer executes register1 = register1 + 1 {register1 = 6}
T2: consumer executes register2 = counter {register2 = 5}
T3: consumer executes register2 = register2 - 1 {register2 = 4}
T4: producer executes counter = register1 {counter = 6}
T5: consumer executes counter = register2 {counter = 4}

(slide modified by R. Doemer, 04/23/10)

Producer-Consumer Problem

6.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Problem

 Critical section

 Segment of code where multiple processes manipulate shared data

 Mutual exclusion

 While one process is executing in its critical section,
no other process is to be allowed to execute in its critical section

 Processes must ask for permission to enter critical section

 Structure of a critical section for a typical process

(slide added by R. Doemer, 04/27/10)

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

6.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solution to Critical-Section Problem

Three requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other process can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then the selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section and
before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

(slide modified by R. Doemer, 04/27/10)

6.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Early Example: Peterson’s Solution

 Two process software-based solution

 No guarantee to work on modern processors
(out-of-order execution!)

 Assume that the LOAD and STORE instructions are atomic;
that is, these cannot be interrupted.

 The two processes Pi and Pj share two variables:

 int turn;

 boolean flag[2];

 The variable turn indicates whose turn it is
to enter the critical section.

 The flag array is used to indicate
if a process is ready to enter the critical section:
flag[i] = true implies that process Pi is ready!

(slide modified by R. Doemer, 04/27/10)

6.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Early Example: Peterson’s Solution

 Algorithm for Process Pi for

 Mutual exclusion is preserved

 Progress requirement is satisfied

 Bounded waiting requirement is met

(slide modified by R. Doemer, 04/27/10)

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

6.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Solution Using Locks

 General solution requires a simple tool: Lock

 Race conditions can be prevented by locks
which protect critical sections

 Critical section solution using locks:

(slide modified by R. Doemer, 04/27/10)

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

6.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization Hardware

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptable

 Either test memory word and set value: TestAndSet

 Or swap contents of two memory words: Swap

(slide modified by R. Doemer, 04/27/10)

6.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

TestAndSet Instruction

 Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

(slide fixed by R. Doemer, 01/07/09)

6.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Solution using TestAndSet

 Shared boolean variable lock indicates
whether or not someone is in the critical section

 Solution:

boolean lock = FALSE;

do {

while (TestAndSet (&lock))

; // do nothing

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

(slide modified by R. Doemer, 04/27/10)

6.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swap Instruction

 Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}

(slide modified by R. Doemer, 04/28/10)

6.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Solution using Swap

 Shared Boolean variable lock indicates
whether or not someone is in the critical section

 Each process has a local Boolean variable key
 Solution:

boolean lock = FALSE;
do {

key = TRUE;
while (key == TRUE)

Swap (&lock, &key);

// critical section

lock = FALSE;

// remainder section

} while (TRUE);
(slide modified by R. Doemer, 04/28/10)

6.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Solutions with Bounded Waiting

 The previous two solutions (with TestAndSet and Swap)

 satisfy the mutual-exclusion and progress requirements

 do not satisfy the bounded-waiting requirement

 Bounded-waiting Mutual Exclusion with TestandSet():

(slide modified by R. Doemer, 04/28/10)

do { waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)

key = TestAndSet(&lock);
waiting[i] = FALSE;
// critical section
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;
if (j == i)

lock = FALSE;
else

waiting[j] = FALSE;
// remainder section

} while (TRUE);

6.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphores

 General synchronization tool that does not require busy waiting

 Semaphore

 Integer variable S

 Two atomic operations: wait() and signal()

 Originally called P() and V()

 Less complicated than previous schemes

 Definition of a Semaphore S (using busy waiting aka. spinlock):

 wait (S) {

while (S <= 0)

; // no-op

S--;

}

 signal (S) {

S++;

}

(slide modified by R. Doemer, 04/28/10)

6.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Binary Semaphore

 Integer value can range only between 0 and 1;
can be simpler to implement

 Also known as mutex lock or simply lock

 Provides mutual exclusion

Semaphore mutex(1); // initialized to 1

do {

wait (mutex);

// critical Section

signal (mutex);

// remainder section

} while (TRUE);

(slide modified by R. Doemer, 04/28/10)

6.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Counting Semaphore

 Integer value can range over an unrestricted domain

 Integer value typically represents number of available resources

 Could be implemented as a binary semaphore (left as exercise!)

 Can be used to control access to N instances of shared resources

Semaphore S(N); // initialized to N available resources

AllocateResource() {

wait (S);

}

ReleaseResource() {

signal (S);

}

(slide modified by R. Doemer, 04/28/10)

6.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Signaling Semaphore

 Integer value initialized to 0

 Integer value represents a flag for inter-process signaling

 Can be used to let a process Pi wait for another concurrent process Pj

 Statements1() of Pj will be executed before Statements2() of Pi

Semaphore S(0); // initialized to 0

Process Pi: wait (S);

Statements2();

…

Process Pj: Statements1();

signal (S);

…

(slide modified by R. Doemer, 04/29/10)

6.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the code
of wait () and signal () on the same semaphore at the same time

 Thus, implementation becomes the critical section problem
where the wait and signal code are placed in the critical section.

 Multi-processor systems often use spinlock (busy waiting)
in critical section implementation

 Implementation code is short

 Little busy waiting if critical section is rarely occupied

 Avoids context-switch if wait() and signal() are executed
on different processors

 Generally spinlocks are not a good solution
because applications may spend lots of time in critical sections!

(slide modified by R. Doemer, 04/28/10)

6.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Implementation

 Implementation without Busy Waiting

 With each semaphore, there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value – integer for semaphore value

 list – queue of waiting processes

 Two operations:

 block – place the process invoking the operation
on the appropriate waiting queue

 wakeup – remove one of processes in the waiting queue
and place it in the ready queue

(slide modified by R. Doemer, 04/28/10)

6.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Implementation

 Implementation without Busy Waiting
wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}
(slide modified by R. Doemer, 04/28/10)

6.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Caveats

 Deadlock
 Two or more processes are waiting indefinitely for an event

that can be created only by one of the waiting processes
 Example: Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);
… ….

signal (S); signal (Q);

signal (Q); signal (S);

 Starvation (indefinite blocking)
 A process may never be removed from the semaphore queue

in which it is suspended
 Priority Inversion

 Scheduling problem when lower-priority process holds a lock
needed by a higher-priority process

(slide modified by R. Doemer, 04/28/10)

6.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Classical Problems of Synchronization

 Classic examples of a large class
of concurrency-control problems:

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

 We will use semaphores for synchronization here

(slide modified by R. Doemer, 04/29/10)

6.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 used as lock for mutual exclusive access

 Semaphore full initialized to the value 0

 indicates number of full buffers

 Semaphore empty initialized to the value N.

 indicates number of empty buffers

(slide modified by R. Doemer, 04/29/10)

6.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer Problem

 The structure of the producer process

do {

// produce an item

wait (empty);

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

(slide modified by R. Doemer, 04/29/10)

6.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer Problem

 The structure of the consumer process

do {

wait (full);

wait (mutex);

// remove an item from the buffer

signal (mutex);

signal (empty);

// consume the item

} while (TRUE);

(slide modified by R. Doemer, 04/29/10)

6.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers – can both read and write

 Problem
 Allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Shared Data
 Data set
 Integer readcount initialized to 0

 Number of current readers
 Semaphore mutex initialized to 1

Mutual exclusion to access readcount
 Semaphore wrt initialized to 1

Mutual exclusion for writers (and first and last reader)

(slide modified by R. Doemer, 04/29/10)

6.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem

 The structure of a writer process

do {

wait (wrt);

// writing is performed

signal (wrt) ;

} while (TRUE);

(slide modified by R. Doemer, 04/29/10)

6.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem

 The structure of a reader process
do {

wait (mutex);
readcount ++ ;
if (readcount == 1)

wait (wrt);
signal (mutex);

// reading is performed

wait (mutex);
readcount - - ;
if (readcount == 0)

signal (wrt);
signal (mutex);

} while (TRUE);
(slide modified by R. Doemer, 04/29/10)

6.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem

 Story
 Dining philosophers spend their life

 Thinking

Eating

 Five sit at a table,
bowl of rice in the middle,
one chopstick to their left and right

 Other than sharing a chopstick
with their neighbor,
they do not interact with each other

 Problem
 Philosopher can only eat when no neighbor is eating

 Shared data
 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

(slide modified by R. Doemer, 04/29/10)

6.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem

 The structure of philosopher i:
do {

wait (chopstick[i]);

wait (chopstick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 Note: Only mutual exclusion is solved here.

(slide modified by R. Doemer, 04/29/10)

6.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem

 Deadlock problem

 All philosophers pick up first chopstick at the same time

 Deadlock solutions

 Allow only 4 philosophers at the table for 5

 Pick both chopsticks at the same time (add a critical section)

 Asymmetric solution:

Odd philosophers pick up left chopstick first

 Even philosophers pick up right chopstick first

 Starvation problem

 Deadlock free does not mean starvation free!

 Left as an exercise!

(slide added by R. Doemer, 04/29/10)

6.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Programmer’s problems with semaphores
 Frequent incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Frequent omitting

 of wait (S)

 or signal (S)

 or both!

 Monitors offer a solution (in the programming language!)
that relieves the programmer of the above problems

 Basically, the compiler automatically
inserts the mutex and its handling!

(slide modified by R. Doemer, 04/30/10)

6.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Monitor

 A high-level abstraction that provides
a convenient and effective mechanism for process synchronization

 Abstract Data Type (ADT)

 Only one process may be active within the monitor at any time

 Shared variables can only be accessed through local procedures

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { … }

…

procedure Pn (…) { … }

initialization(…) { … }

}
(slide modified by R. Doemer, 04/30/10)

6.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Schematic View of a Monitor

(slide modified by R. Doemer, 04/29/10)

6.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

 Monitor construct defined so far is not yet powerful enough
to solve general synchronization problems

 Condition Variables are needed in the monitor
to pass control from one process to another

 condition x;

 Two operations exist on a condition variable:

 x.wait()

 a process that invokes the operation is suspended

 in turn, another process may enter the monitor

 x.signal()

 resumes one of the processes that invoked x.wait()

 if no process is waiting, signaling has no effect

 Note: Many implementations also offer x.broadcast()
which will allow all waiting processes to resume (one after another)

(slide modified by R. Doemer, 04/30/10)

6.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

(slide modified by R. Doemer, 04/29/10)

 Schematic View of a Monitor with Condition Variables

6.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

 Example:

 Process Q suspends in monitor on condition x

 Q: x.wait ()

 Process P enters monitor and signals condition x

 P: x.signal ()

 Now, both processes can conceptually continue their execution.

 However, only one may be active in the monitor at any time!

 Choice between two possibilities:

1. P waits until Q leaves the monitor (or waits for another condition)

– Called “signal and wait” (aka. “Hoare-style”)

2. Q waits until P leaves the monitor (or waits for another condition)

– Called “signal and continue” (aka. “Mesa-style”)

– This is implemented by Pthreads and Nachos condition variables!

(slide modified by R. Doemer, 04/30/10)

6.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitor Solution to Dining Philosophers

(slide modified by R. Doemer, 04/29/10)

 Deadlock-free solution to dining-philosophers problem

 Philosopher picks up chopsticks when both are available

 Each philosopher i invokes the monitor operations pickup()
and putdown() in the following sequence:

 DiningPhilosophers.pickup(i);

 EAT

 DiningPhilosophers.putdown(i);

 We use the following to describe the state of each philosopher

 enum { THINKING; HUNGRY, EATING) state [5];

 We also use the following condition variables
in which a philosopher can wait when hungry
but no chopsticks are available

 condition self [5];

6.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitor Solution to Dining Philosophers

(slide modified by R. Doemer, 04/29/10)

 Deadlock-free solution to dining-philosophers problem

monitor DP
{

enum { THINKING; HUNGRY, EATING) state [5];
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

self[i].wait;
}
void putdown (int i) {
state[i] = THINKING;
test((i + 4) % 5);
test((i + 1) % 5);
}

…

6.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitor Solution to Dining Philosophers

(slide modified by R. Doemer, 04/29/10)

 Deadlock-free solution to dining-philosophers problem
…

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {
state[i] = EATING;
self[i].signal();
}

}

initialization_code () {
for (int i = 0; i < 5; i++)

state[i] = THINKING;
}

}

 Note: This is not a starvation-free solution! (left as an exercise)

6.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization Examples

 Solaris

 Windows XP

 Linux

 Pthreads API

(slide modified by R. Doemer, 04/29/10)

6.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Synchronization

 Pthreads API is OS-independent (portable)

 It provides:

 mutex locks

 condition variables (“Mesa-style”)

 Non-portable extensions include:

 read-write locks

 spin locks

 semaphores

(slide modified by R. Doemer, 04/30/10)

6.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Synchronization

 Pthreads Mutex Objects

 Act as binary semaphores initialized to 1

 Implement mutual exclusion for a critical region

 Creating a pthread mutex:

 Equivalent to: Semaphore S(1);

 Locking a pthread mutex: (entering a critical region / monitor)

 Equivalent to: wait(S);

 Unlocking a pthread mutex: (leaving a critical region/ monitor)

 Equivalent to: signal(S);

pthread_mutex_t mutex = PHTREAD_MUTEX_INITIALIZER;

(slide added by R. Doemer, 04/29/10)

pthread_mutex_lock(&mutex);

pthread_mutex_unlock(&mutex);

6.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Synchronization

 Pthreads Condition Variables
 Act as condition variables in a monitor implemented by a pthread mutex

 Allow to pass control predictably from one thread to another

 Creating a pthread condition variable:

 Equivalent to: condition x;

 Waiting on a pthread condition: (atomically releases/re-acquires the mutex)

 Equivalent to: x.wait();

 Monitor mutex must be held by the calling thread and
implicitly will be reacquired by the thread upon return

 Signaling a pthread condition: (signals a waiting thread and continues)

 Equivalent to: x.signal();

 Monitor mutex must be held by the calling thread
in order to achieve predictable scheduling behavior

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

(slide added by R. Doemer, 04/30/10)

pthread_cond_wait(&cond, &mutex);

pthread_cond_signal(&cond);

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 6

