
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 6:
Process Synchronization

(slides improved by R. Doemer, 04/22/10 – 04/30/10)

6.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 6: Process Synchronization

 Background

 The Producer-Consumer Problem

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

 Pthread Synchronization

 Atomic Transactions

(slide modified by R. Doemer, 04/29/10)

6.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To introduce the critical-section problem,
whose solutions can be used to ensure the consistency of shared data

 To present both software and hardware solutions
of the critical-section problem

 To introduce the concept of an atomic transaction
and describe mechanisms to ensure atomicity

(slide modified by R. Doemer, 04/22/10)

6.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Concurrent execution of processes or threads
creates situations of non-determinism!

 CPU scheduling by operating system often (!)
yields non-deterministic order of execution
of concurrent program instructions

 e.g. thread may be preempted at any time (!)

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms
to ensure the orderly execution of cooperating processes

(slide modified by R. Doemer, 04/22/10)

6.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes

 Producer process produces information that is consumed by a
consumer process

 Buffered communication

 Unbounded-buffer places no practical limit on the size of the
buffer

 Bounded-buffer assumes that there is a fixed buffer size

 EECS111 Notes:

 We will discuss the postponed bounded buffer implementation
from chapter 3 here as Version 1

 We will improve this implementation then (in chapter 6)
using better efficiency and synchronization as Version 2 and 3

(slide inserted from chapter 3 and modified by R. Doemer, 04/27/10)

6.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Bounded buffer implementation (Version 1)

 Data in shared memory

(slide inserted from chapter 3 and modified by R. Doemer, 04/23/10)

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE]; /* circular buffer */

int in = 0; /* index of next free position */

int out = 0; /* index of first full position */

6.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Producer implementation (Version 1)

 Produce an item, wait for buffer space, store in buffer

item nextProduced;

while (true) {

/* produce an item and put in nextProduced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

}

(slide modified by R. Doemer, 04/23/10)

6.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Consumer implementation (Version 1)

 Wait for an item available, load it from buffer, consume it

item nextConsumed;

while (true) {

while (in == out)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in nextConsumed */

}

(slide modified by R. Doemer, 04/23/10)

6.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Discussion on Implementation of Version 1
 Data in shared memory

buffer[], in, out

 Busy waiting in both producer and consumer

Empty loops

 Is this a valid / safe implementation?

Variable in only modified by producer

Variable out only modified by consumer

Writing an integer to memory should be atomic

 Is this an efficient implementation?

 (a) Space: At most BUFFER_SIZE–1 items can be stored

 (b) Time: We’ll investigate that in Assignment 3…

(slide modified by R. Doemer, 04/23/10)

6.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Bounded buffer implementation (Version 2)

 Data in shared memory

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE]; /* circular buffer */

int in = 0; /* index of next free position */

int out = 0; /* index of first full position */

int counter = 0; /* number of items in buffer */

(slide modified by R. Doemer, 04/23/10)

6.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Producer implementation (Version 2)

 Produce an item, wait for buffer space, store in buffer

item nextProduced;

while (true) {

/* produce an item and put in nextProduced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

(slide modified by R. Doemer, 04/23/10)

6.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Consumer implementation (Version 2)

 Wait for an item available, load it from buffer, consume it

item nextConsumed;

while (true) {

while (counter == 0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in nextConsumed */

}

(slide modified by R. Doemer, 04/23/10)

6.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Producer-Consumer Problem

 Discussion on Implementation of Version 2
 Data in shared memory

buffer[], in, out, counter

 Busy waiting in both producer and consumer

Empty loops

 Is this a valid / safe implementation?

Variable in only modified by producer

Variable out only modified by consumer

Variable counter is modified by both consumer and producer!
=> Race Condition! (see next slide)

 Is this an efficient implementation?

 (a) Space: Now BUFFER_SIZE items can be stored!

 (b) Time: We’ll investigate that in Assignment 4…
(slide modified by R. Doemer, 04/23/10)

6.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

 Version 2 is not safe!

 A race condition exists: Critical Section Problem!
counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

counter-- could be implemented as
register2 = counter
register2 = register2 - 1
counter = register2

Consider this execution interleaving with counter = 5 initially:
T0: producer executes register1 = counter {register1 = 5}
T1: producer executes register1 = register1 + 1 {register1 = 6}
T2: consumer executes register2 = counter {register2 = 5}
T3: consumer executes register2 = register2 - 1 {register2 = 4}
T4: producer executes counter = register1 {counter = 6}
T5: consumer executes counter = register2 {counter = 4}

(slide modified by R. Doemer, 04/23/10)

Producer-Consumer Problem

6.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Problem

 Critical section

 Segment of code where multiple processes manipulate shared data

 Mutual exclusion

 While one process is executing in its critical section,
no other process is to be allowed to execute in its critical section

 Processes must ask for permission to enter critical section

 Structure of a critical section for a typical process

(slide added by R. Doemer, 04/27/10)

do {

entry section

critical section

exit section

remainder section

} while (TRUE);

6.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solution to Critical-Section Problem

Three requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section,
then no other process can be executing in their critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical section,
then the selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times
that other processes are allowed to enter their critical sections
after a process has made a request to enter its critical section and
before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

(slide modified by R. Doemer, 04/27/10)

6.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Early Example: Peterson’s Solution

 Two process software-based solution

 No guarantee to work on modern processors
(out-of-order execution!)

 Assume that the LOAD and STORE instructions are atomic;
that is, these cannot be interrupted.

 The two processes Pi and Pj share two variables:

 int turn;

 boolean flag[2];

 The variable turn indicates whose turn it is
to enter the critical section.

 The flag array is used to indicate
if a process is ready to enter the critical section:
flag[i] = true implies that process Pi is ready!

(slide modified by R. Doemer, 04/27/10)

6.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Early Example: Peterson’s Solution

 Algorithm for Process Pi for

 Mutual exclusion is preserved

 Progress requirement is satisfied

 Bounded waiting requirement is met

(slide modified by R. Doemer, 04/27/10)

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

6.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hardware Solution Using Locks

 General solution requires a simple tool: Lock

 Race conditions can be prevented by locks
which protect critical sections

 Critical section solution using locks:

(slide modified by R. Doemer, 04/27/10)

do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

6.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization Hardware

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptable

 Either test memory word and set value: TestAndSet

 Or swap contents of two memory words: Swap

(slide modified by R. Doemer, 04/27/10)

6.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

TestAndSet Instruction

 Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

(slide fixed by R. Doemer, 01/07/09)

6.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Solution using TestAndSet

 Shared boolean variable lock indicates
whether or not someone is in the critical section

 Solution:

boolean lock = FALSE;

do {

while (TestAndSet (&lock))

; // do nothing

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

(slide modified by R. Doemer, 04/27/10)

6.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swap Instruction

 Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp = *a;

*a = *b;

*b = temp:

}

(slide modified by R. Doemer, 04/28/10)

6.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Solution using Swap

 Shared Boolean variable lock indicates
whether or not someone is in the critical section

 Each process has a local Boolean variable key
 Solution:

boolean lock = FALSE;
do {

key = TRUE;
while (key == TRUE)

Swap (&lock, &key);

// critical section

lock = FALSE;

// remainder section

} while (TRUE);
(slide modified by R. Doemer, 04/28/10)

6.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Critical Section Solutions with Bounded Waiting

 The previous two solutions (with TestAndSet and Swap)

 satisfy the mutual-exclusion and progress requirements

 do not satisfy the bounded-waiting requirement

 Bounded-waiting Mutual Exclusion with TestandSet():

(slide modified by R. Doemer, 04/28/10)

do { waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)

key = TestAndSet(&lock);
waiting[i] = FALSE;
// critical section
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;
if (j == i)

lock = FALSE;
else

waiting[j] = FALSE;
// remainder section

} while (TRUE);

6.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphores

 General synchronization tool that does not require busy waiting

 Semaphore

 Integer variable S

 Two atomic operations: wait() and signal()

 Originally called P() and V()

 Less complicated than previous schemes

 Definition of a Semaphore S (using busy waiting aka. spinlock):

 wait (S) {

while (S <= 0)

; // no-op

S--;

}

 signal (S) {

S++;

}

(slide modified by R. Doemer, 04/28/10)

6.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Binary Semaphore

 Integer value can range only between 0 and 1;
can be simpler to implement

 Also known as mutex lock or simply lock

 Provides mutual exclusion

Semaphore mutex(1); // initialized to 1

do {

wait (mutex);

// critical Section

signal (mutex);

// remainder section

} while (TRUE);

(slide modified by R. Doemer, 04/28/10)

6.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Counting Semaphore

 Integer value can range over an unrestricted domain

 Integer value typically represents number of available resources

 Could be implemented as a binary semaphore (left as exercise!)

 Can be used to control access to N instances of shared resources

Semaphore S(N); // initialized to N available resources

AllocateResource() {

wait (S);

}

ReleaseResource() {

signal (S);

}

(slide modified by R. Doemer, 04/28/10)

6.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore as General Synchronization Tool

 Signaling Semaphore

 Integer value initialized to 0

 Integer value represents a flag for inter-process signaling

 Can be used to let a process Pi wait for another concurrent process Pj

 Statements1() of Pj will be executed before Statements2() of Pi

Semaphore S(0); // initialized to 0

Process Pi: wait (S);

Statements2();

…

Process Pj: Statements1();

signal (S);

…

(slide modified by R. Doemer, 04/29/10)

6.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Implementation

 Must guarantee that no two processes can execute the code
of wait () and signal () on the same semaphore at the same time

 Thus, implementation becomes the critical section problem
where the wait and signal code are placed in the critical section.

 Multi-processor systems often use spinlock (busy waiting)
in critical section implementation

 Implementation code is short

 Little busy waiting if critical section is rarely occupied

 Avoids context-switch if wait() and signal() are executed
on different processors

 Generally spinlocks are not a good solution
because applications may spend lots of time in critical sections!

(slide modified by R. Doemer, 04/28/10)

6.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Implementation

 Implementation without Busy Waiting

 With each semaphore, there is an associated waiting queue

 Each entry in a waiting queue has two data items:

 value – integer for semaphore value

 list – queue of waiting processes

 Two operations:

 block – place the process invoking the operation
on the appropriate waiting queue

 wakeup – remove one of processes in the waiting queue
and place it in the ready queue

(slide modified by R. Doemer, 04/28/10)

6.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Implementation

 Implementation without Busy Waiting
wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}
(slide modified by R. Doemer, 04/28/10)

6.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semaphore Caveats

 Deadlock
 Two or more processes are waiting indefinitely for an event

that can be created only by one of the waiting processes
 Example: Let S and Q be two semaphores initialized to 1

P0 P1

wait (S); wait (Q);

wait (Q); wait (S);
… ….

signal (S); signal (Q);

signal (Q); signal (S);

 Starvation (indefinite blocking)
 A process may never be removed from the semaphore queue

in which it is suspended
 Priority Inversion

 Scheduling problem when lower-priority process holds a lock
needed by a higher-priority process

(slide modified by R. Doemer, 04/28/10)

6.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Classical Problems of Synchronization

 Classic examples of a large class
of concurrency-control problems:

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

 We will use semaphores for synchronization here

(slide modified by R. Doemer, 04/29/10)

6.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 used as lock for mutual exclusive access

 Semaphore full initialized to the value 0

 indicates number of full buffers

 Semaphore empty initialized to the value N.

 indicates number of empty buffers

(slide modified by R. Doemer, 04/29/10)

6.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer Problem

 The structure of the producer process

do {

// produce an item

wait (empty);

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full);

} while (TRUE);

(slide modified by R. Doemer, 04/29/10)

6.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Bounded-Buffer Problem

 The structure of the consumer process

do {

wait (full);

wait (mutex);

// remove an item from the buffer

signal (mutex);

signal (empty);

// consume the item

} while (TRUE);

(slide modified by R. Doemer, 04/29/10)

6.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers – can both read and write

 Problem
 Allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Shared Data
 Data set
 Integer readcount initialized to 0

 Number of current readers
 Semaphore mutex initialized to 1

Mutual exclusion to access readcount
 Semaphore wrt initialized to 1

Mutual exclusion for writers (and first and last reader)

(slide modified by R. Doemer, 04/29/10)

6.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem

 The structure of a writer process

do {

wait (wrt);

// writing is performed

signal (wrt) ;

} while (TRUE);

(slide modified by R. Doemer, 04/29/10)

6.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Readers-Writers Problem

 The structure of a reader process
do {

wait (mutex);
readcount ++ ;
if (readcount == 1)

wait (wrt);
signal (mutex);

// reading is performed

wait (mutex);
readcount - - ;
if (readcount == 0)

signal (wrt);
signal (mutex);

} while (TRUE);
(slide modified by R. Doemer, 04/29/10)

6.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem

 Story
 Dining philosophers spend their life

 Thinking

Eating

 Five sit at a table,
bowl of rice in the middle,
one chopstick to their left and right

 Other than sharing a chopstick
with their neighbor,
they do not interact with each other

 Problem
 Philosopher can only eat when no neighbor is eating

 Shared data
 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

(slide modified by R. Doemer, 04/29/10)

6.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem

 The structure of philosopher i:
do {

wait (chopstick[i]);

wait (chopstick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 Note: Only mutual exclusion is solved here.

(slide modified by R. Doemer, 04/29/10)

6.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dining-Philosophers Problem

 Deadlock problem

 All philosophers pick up first chopstick at the same time

 Deadlock solutions

 Allow only 4 philosophers at the table for 5

 Pick both chopsticks at the same time (add a critical section)

 Asymmetric solution:

Odd philosophers pick up left chopstick first

 Even philosophers pick up right chopstick first

 Starvation problem

 Deadlock free does not mean starvation free!

 Left as an exercise!

(slide added by R. Doemer, 04/29/10)

6.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Programmer’s problems with semaphores
 Frequent incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Frequent omitting

 of wait (S)

 or signal (S)

 or both!

 Monitors offer a solution (in the programming language!)
that relieves the programmer of the above problems

 Basically, the compiler automatically
inserts the mutex and its handling!

(slide modified by R. Doemer, 04/30/10)

6.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Monitor

 A high-level abstraction that provides
a convenient and effective mechanism for process synchronization

 Abstract Data Type (ADT)

 Only one process may be active within the monitor at any time

 Shared variables can only be accessed through local procedures

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { … }

…

procedure Pn (…) { … }

initialization(…) { … }

}
(slide modified by R. Doemer, 04/30/10)

6.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitors

 Schematic View of a Monitor

(slide modified by R. Doemer, 04/29/10)

6.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

 Monitor construct defined so far is not yet powerful enough
to solve general synchronization problems

 Condition Variables are needed in the monitor
to pass control from one process to another

 condition x;

 Two operations exist on a condition variable:

 x.wait()

 a process that invokes the operation is suspended

 in turn, another process may enter the monitor

 x.signal()

 resumes one of the processes that invoked x.wait()

 if no process is waiting, signaling has no effect

 Note: Many implementations also offer x.broadcast()
which will allow all waiting processes to resume (one after another)

(slide modified by R. Doemer, 04/30/10)

6.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

(slide modified by R. Doemer, 04/29/10)

 Schematic View of a Monitor with Condition Variables

6.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Condition Variables in Monitor

 Example:

 Process Q suspends in monitor on condition x

 Q: x.wait ()

 Process P enters monitor and signals condition x

 P: x.signal ()

 Now, both processes can conceptually continue their execution.

 However, only one may be active in the monitor at any time!

 Choice between two possibilities:

1. P waits until Q leaves the monitor (or waits for another condition)

– Called “signal and wait” (aka. “Hoare-style”)

2. Q waits until P leaves the monitor (or waits for another condition)

– Called “signal and continue” (aka. “Mesa-style”)

– This is implemented by Pthreads and Nachos condition variables!

(slide modified by R. Doemer, 04/30/10)

6.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitor Solution to Dining Philosophers

(slide modified by R. Doemer, 04/29/10)

 Deadlock-free solution to dining-philosophers problem

 Philosopher picks up chopsticks when both are available

 Each philosopher i invokes the monitor operations pickup()
and putdown() in the following sequence:

 DiningPhilosophers.pickup(i);

 EAT

 DiningPhilosophers.putdown(i);

 We use the following to describe the state of each philosopher

 enum { THINKING; HUNGRY, EATING) state [5];

 We also use the following condition variables
in which a philosopher can wait when hungry
but no chopsticks are available

 condition self [5];

6.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitor Solution to Dining Philosophers

(slide modified by R. Doemer, 04/29/10)

 Deadlock-free solution to dining-philosophers problem

monitor DP
{

enum { THINKING; HUNGRY, EATING) state [5];
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING)

self[i].wait;
}
void putdown (int i) {
state[i] = THINKING;
test((i + 4) % 5);
test((i + 1) % 5);
}

…

6.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Monitor Solution to Dining Philosophers

(slide modified by R. Doemer, 04/29/10)

 Deadlock-free solution to dining-philosophers problem
…

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {
state[i] = EATING;
self[i].signal();
}

}

initialization_code () {
for (int i = 0; i < 5; i++)

state[i] = THINKING;
}

}

 Note: This is not a starvation-free solution! (left as an exercise)

6.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Synchronization Examples

 Solaris

 Windows XP

 Linux

 Pthreads API

(slide modified by R. Doemer, 04/29/10)

6.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Synchronization

 Pthreads API is OS-independent (portable)

 It provides:

 mutex locks

 condition variables (“Mesa-style”)

 Non-portable extensions include:

 read-write locks

 spin locks

 semaphores

(slide modified by R. Doemer, 04/30/10)

6.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Synchronization

 Pthreads Mutex Objects

 Act as binary semaphores initialized to 1

 Implement mutual exclusion for a critical region

 Creating a pthread mutex:

 Equivalent to: Semaphore S(1);

 Locking a pthread mutex: (entering a critical region / monitor)

 Equivalent to: wait(S);

 Unlocking a pthread mutex: (leaving a critical region/ monitor)

 Equivalent to: signal(S);

pthread_mutex_t mutex = PHTREAD_MUTEX_INITIALIZER;

(slide added by R. Doemer, 04/29/10)

pthread_mutex_lock(&mutex);

pthread_mutex_unlock(&mutex);

6.56 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads Synchronization

 Pthreads Condition Variables
 Act as condition variables in a monitor implemented by a pthread mutex

 Allow to pass control predictably from one thread to another

 Creating a pthread condition variable:

 Equivalent to: condition x;

 Waiting on a pthread condition: (atomically releases/re-acquires the mutex)

 Equivalent to: x.wait();

 Monitor mutex must be held by the calling thread and
implicitly will be reacquired by the thread upon return

 Signaling a pthread condition: (signals a waiting thread and continues)

 Equivalent to: x.signal();

 Monitor mutex must be held by the calling thread
in order to achieve predictable scheduling behavior

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

(slide added by R. Doemer, 04/30/10)

pthread_cond_wait(&cond, &mutex);

pthread_cond_signal(&cond);

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 6

