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Chapter 7: Deadlocks

 The Deadlock Problem

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection 

 Recovery from Deadlock 
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Chapter Objectives

 To develop a description of deadlocks, which prevent
sets of concurrent processes from completing their tasks

 To present a number of different methods for preventing
or avoiding deadlocks in a computer system

(slide modified by R. Doemer, 05/13/10)
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The Deadlock Problem

 A set of blocked processes, each holding a resource and
waiting to acquire a resource held by another process in the set

 Application Example

 System has 2 disk drives

 P1 and P2 each hold one disk drive and each needs another one

 Example with semaphores

 Binary semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)
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Bridge Crossing Example

 Traffic across bridge has only one lane available

 Each section of the bridge can be viewed as a resource

 If a deadlock occurs, it can be resolved by cars backing up 
(preempt resources and rollback)

 Several cars may have to be backed up if a deadlock occurs

 Starvation is possible

 Note –
Most operating systems do not prevent or deal with deadlocks!
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Dead Locks, System Model

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request 

 use 

 release
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Deadlock Characterization

 Mutual exclusion: only one process at a time can use a resource

 Hold and wait: a process holding at least one resource is waiting 
to acquire additional resources held by other processes

 No preemption: a resource can be released only voluntarily by 
the process holding it, after that process has completed its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting 
processes such that P0 is waiting for a resource that is held by P1, 
P1 is waiting for a resource that is held by P2, …,
Pn–1 is waiting for a resource that is held by Pn,
and Pn is waiting for a resource that is held by P0.

Note that these four are necessary conditions!

Deadlock can arise if and only if four conditions hold simultaneously:
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Resource-Allocation Graph

 V is partitioned into two types:

 P = {P1, P2, …, Pn},
the set consisting of all the processes in the system

 R = {R1, R2, …, Rm},
the set consisting of all resource types in the system

 E is partitioned into two types:

 request edge – directed edge Pi  Rj

 assignment edge – directed edge Rj  Pi

Resource-Allocation Graph:
A set of vertices V and a set of edges E.
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Resource-Allocation Graph

 Process

 Resource type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Rj

Pi

Rj
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Example of a Resource-Allocation Graph
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Resource-Allocation Graph With A Deadlock
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Graph With A Cycle But No Deadlock
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Basic Facts

 If resource-allocation graph contains no cycles
 no deadlock!

 If resource-allocation graph contains a cycle


 if only one instance exists per resource type, 
then it is a deadlock

 if several instances exist per resource type, 
then there is a possibility of a deadlock
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Methods for Dealing with Deadlocks

 Ensure that the system will never enter a deadlock state

 Deadlock prevention

 Deadlock avoidance

 Allow the system to enter a deadlock state and then recover

 Recovery from deadlock

 Ignore the problem and pretend that deadlocks never occur
in the system

 used by most operating systems,
including UNIX and Windows
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Deadlock Prevention

 Mutual Exclusion – not required for sharable resources;
must hold for non-sharable resources

 Hold and Wait – must guarantee that whenever a process 
requests a resource, it does not hold any other resources

 Require process to request and be allocated all its resources 
before it begins execution, or allow process to request 
resources only when the process has none

 Low resource utilization; starvation possible

To prevent deadlocks from occurring,
we can restrain the ways request can be made.

Prevent one of the four necessary conditions!
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Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests another 
resource that cannot be immediately allocated to it, then all 
resources currently being held are released

 Preempted resources are added to the list of resources for which
the process is waiting

 Process will be restarted only when it can regain its old resources, 
as well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types, and 
require that each process requests resources in an increasing order of 
enumeration

 This is the most realistic way of deadlock prevention!
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Deadlock Avoidance

 Simplest and most useful model requires that
each process declares the maximum number
of resources of each type that it may need

 A deadlock-avoidance algorithm dynamically examines the 
resource-allocation state to ensure that there can never be 
a circular-wait condition

 Resource-allocation state is defined by the number of 
available and allocated resources,
and the maximum demands of the processes

Requires that the system has some additional a priori information
available
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Safe State

 When a process requests an available resource, system must 
decide if immediate allocation leaves the system in a safe state

 System is in safe state
if there exists a sequence <P1, P2, …, Pn> of all processes
such that for each Pi, the resources that Pi can still request
can be satisfied by the currently available resources
plus the resources held by all the Pj, with j < i

 That is:

 If resource needs of Pi are not immediately available,
then Pi can wait until all Pj have finished

 When Pj is finished, Pi can obtain needed resources, 
execute, return allocated resources, and terminate

 When Pi terminates, Pi +1 can obtain its needed resources, 
and so on 
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Basic Facts

 If a system is in safe state  not in deadlock state

 If a system is in unsafe state  possibility of deadlock

 Avoidance
 ensure that a system will never enter an unsafe state!
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Safe, Unsafe, and Deadlock State 

 Not all unsafe states are deadlock states!

 However, an unsafe state may lead to a deadlock
(that cannot be avoided any more by the operating system).

 Only by staying in safe state, the operating system can avoid deadlocks!
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Avoidance Algorithms

 Single instance of a resource type

 Use a resource-allocation graph

 Multiple instances of a resource type

 Use the banker’s algorithm
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Resource-Allocation Graph Scheme

 Claim edge (represented by a dashed line):
Pi  Rj indicates that process Pi may request resource Rj; 

 Claim edge converts to request edge
when a process requests a resource

 Request edge converts to assignment edge
when the resource is allocated to the process

 When a resource is released by a process,
assignment edge reconverts to a claim edge

 Resources must be claimed a priori in the system
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Resource-Allocation Graph with Claim Edges
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Unsafe State In Resource-Allocation Graph
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Resource-Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if
converting the request edge to an assignment edge
does not result in the formation of a cycle
in the resource allocation graph

 Notes:

 Detecting a cycle in a resource-allocation graph with n processes
requires an order of n2 operations.

 This algorithm is not applicable if multiple instances of resource types 
are available.
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Banker’s Algorithm

 Multiple instances per resource type are supported

 Each process must a priori claim maximum use

 When a process requests a resource, it may have to wait  

 When a process gets all its resources, it must return them 
in a finite amount of time
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Data Structures for the Banker’s Algorithm 

 Available: Vector of length m.
If available[j] = k, there are k instances of resource type Rj available

 Max: n x m matrix.
If Max[i,j] = k, then process Pi may request at most k instances
of resource type Rj

 Allocation: n x m matrix.
If Allocation[i,j] = k, then Pi is currently allocated k instances of Rj

 Need: n x m matrix.
If Need[i,j] = k, then Pi may need k more instances of Rj
to complete its task

 Note: Need = Max – Allocation

Let n = number of processes, and m = number of resources types. 
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Banker’s Algorithm: Safety Algorithm

Safety Algorithm determines whether or not the system is in safe state:

1. Let Work and Finish be vectors of length m and n, respectively.  
Initialize:

Work = Available

Finish[i] = false for i = 0, 1, …, n-1

2. Find an index i such that both:

(a) Finish[i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish[i] == true for all i, then the system is in a safe state

Essentially:
Find a sequence of processes that can finish;
if all can finish, the system is in safe state!
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Banker’s Algorithm: Resource-Request

Resource-Request Algorithm for Process Pi

determines whether we can grant a request by Pi now or it has to wait:

Request = request vector for process Pi.
If Requesti [j] = k, then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2.
Otherwise, raise error condition, since process exceeds its maximum!

2. If Requesti  Available, go to step 3.
Otherwise Pi must wait, since resources are currently not available

3. Pretend to allocate requested resources to Pi by modifying the state:

Available = Available – Request

Allocationi = Allocationi + Requesti
Needi = Needi – Requesti

4. Run the Safety Algorithm:

 If safe  allocate the requested resources to Pi

 If unsafe  Pi must wait; restore the previous resource-allocation state
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Example of Banker’s Algorithm

 5 processes P0  through P4

 3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

 Snapshot at time T0:

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

 The system is in a safe state
since the sequence <P1, P3, P4, P2, P0> satisfies the safety criteria

(slide modified by R. Doemer, 05/13/10)



7.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Banker’s Algorithm

 Snapshot at time T0:

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 3 3 2

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

 Example: P1 requests (1,0,2)

 Request (1,0,2)  Available (3,3,2), so Available becomes (2,3,0)

 Next, row P1 := 3 0 2 3 2 2 0 2 0

 Finally, executing safety algorithm shows that
sequence <P1, P3, P4, P0, P2> satisfies the safety requirement

 So, request is granted (since the system stays in safe state)!
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Example of Banker’s Algorithm

 Snapshot at time T1:

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 2 3 0

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

 Example Step 2: P4 requests (3,3,0)

 Request (3,3,0) > Available (2,3,0), so resources are not available!

 Request cannot be granted at this time

 Process P4 needs to wait for resources to be released by other 
processes
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Example of Banker’s Algorithm

 Snapshot at time T2:

Allocation Max Need Available

A B C A B C A B C A B C

P0 0 1 0 7 5 3 7 4 3 2 3 0

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

 Example Step 3: P0 requests (0,2,0)

 Request (0,2,0)  Available (2,3,0), so Available becomes (2,1,0)

 Next, row P0 := 0 3 0 7 5 3 7 2 3

 Finally, executing safety algorithm shows that there is no sequence
that satisfies the safety requirement

 So, request cannot be granted (since system would be in unsafe state)!
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Deadlock Detection

 Allow system to enter deadlock state 

 Detection algorithm

 Recovery scheme
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Deadlock Detection: Single Resources

 If there is only a single instance for each resource type,
we can use a variation of the resource-allocation graph
to detect deadlocks

 Maintain wait-for graph

 Nodes are processes

 Pi  Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that searches for a cycle
in the graph. If there is a cycle, there exists a deadlock

 An algorithm to detect a cycle in a graph requires an order 
of n2 operations, where n is the number of vertices in the 
graph
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Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph
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Deadlock Detection: Multiple Resources

 If there are multiple instances for each resource type,
we can use a variation of the Banker’s algorithm
to detect deadlocks

 Available:
A vector of length m indicates the number of available resources of 
each type.

 Allocation:
A n x m matrix defines the number of resources of each type currently 
allocated to each process.

 Request:
A n x m matrix indicates the current request of each process.
If Request [ij] = k, then process Pi is requesting k more instances
of resource type Rj.
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Deadlock Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

(a) Work = Available

(b) For i = 1,2, …, n,
if Allocationi  0, then Finish[i] = false;
otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
Go to step 2

4. If Finish[i] == false for some i, then the system is deadlocked.
All processes i are deadlocked, for which Finish[i] == false.
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Example of Detection Algorithm

 Five processes P0 through P4

 Three resource types 
A (7 instances), B (2 instances), and C (6 instances)

 Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i,
so system is not in deadlocked state.
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Example (Cont.)

 P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0 

P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient resources to 
fulfill other processes’ requests

 Deadlock exists, consisting of processes P1, P2, P3, and P4
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Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be many cycles in the 
resource graph and so we would not be able to tell which of the many 
deadlocked processes “caused” the deadlock
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Recovery from Deadlock: Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is eliminated

 In which order should we choose to abort?

 Priority of the process

 How long process has computed, and how much longer to completion

 Resources the process has used

 Resources process needs to complete

 How many processes will need to be terminated

 Is process interactive or batch?
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Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart process for that state

 Starvation – same process may always be picked as victim, 
include number of rollbacks in cost factor
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End of Chapter 7


