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r & Objectives

® To provide a detailed description of various ways of organizing
memory hardware

m  To discuss various memory-management techniques,
including paging and segmentation

® To provide a detailed description of the Intel Pentium, which
supports both pure segmentation and segmentation with paging
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r & Background

® Program must be brought (from disk) into memory and placed
within a process for it to be run

®  Main memory and registers are the only storage
the CPU can access directly

m Register access in one CPU clock cycle (or less)
Main memory access can take many cycles
m Cache sits between main memory and CPU registers

®m Protection of memory is required to ensure safe cooperation
of processes
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=$7/ Base and Limit Registers

m A pair of base and limit registers define the logical address space
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*“%»/ Binding of Instructions and Data to Memory

m Address binding of instructions and data to memory addresses
can happen at three different stages

e Compile time: If memory location is known a priori,
compiler can generate absolute code;
must recompile code if starting location changes

e Load time: Compiler must generate relocatable code
if memory location is not known at compile time;
Loader completes address binding

e Execution time: Address binding can be delayed until run time
if the process can be moved during its execution
from one memory segment to another;
need hardware support in CPU for address mapping
(e.g., base and limit registers);
Memory Management Unit in CPU determines address binding
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“#”Multi-Step Processing of a User Program
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Dynamic Linking: Linking is postponed until execution time
® Dynamic linking is also known as shared libraries

m A small piece of code, a stub routine, is used to locate the
appropriate memory-resident library routine

m  Stub replaces itself with the address of the routine,
and then executes the routine

m  Operating system needed to check if routine is in the processes’
memory address

® Dynamic linking is particularly useful for libraries
(which then can be shared by multiple processes)

(slide modified by R. Doemer, 05/17/10) .. [:*
Operating System Concepts — 81" Edition 8.8 Silberschatz, Galvin and Gagne ©2009




™

PR
“#”/Logical vs. Physical Address Space

m The concept of alogical address space
that is bound to a separate physical address space
is central to proper memory management

e Logical address —
generated by the CPU; also referred to as virtual address

e Physical address —
address seen by the memory unit

m Logical and physical addresses are the same
in compile-time and load-time address-binding schemes

m Logical (virtual) and physical addresses differ
in execution-time address-binding scheme

<
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"‘-"st,"-:i Memory-Management Unit (MMU)

®  Memory-Management Unit (MMU):
Hardware device that maps virtual to physical address

® In MMU scheme, the value in a relocation register is added
to every address generated by a user process
at the time it is sent to memory

®  The user program deals with logical addresses;
it never sees the real physical addresses

(W
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- Swapping

® Swapping:
A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution
m Backing store — fast disk, large enough to accommodate copies
of all memory images for all processes;
must provide direct access to these memory images
m System maintains a ready queue of ready-to-run processes
which have memory images on disk
m  Major part of swap time is transfer time;
transfer time is directly proportional to the amount of memory swapped
® Roll out, roll in — swapping variant used for priority-based scheduling;
lower-priority process is swapped out so that a higher-priority process
can be loaded and executed
®  Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)
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“$¥7  Schematic View of Swapping
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® } . .
r Contiguous Allocation

®  Main memory is usually divided into two partitions:

e Resident operating system, usually held in low memory
with interrupt vector

e User processes then held in high memory

m Relocation registers are used to protect user processes from
each other, and from changing operating-system code and data

e Base register contains value of smallest physical address

e Limit register contains range of logical addresses —
each logical address must be less than the limit register

e MMU maps logical address to physical address dynamically
(at run time)
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‘*v Contiguous Allocation

m  Hardware Support for Relocation and Limit Registers
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‘w- Contiguous Allocation

®  Multiple-partition allocation

e Hole — block of available memory;
holes of various sizes are scattered throughout memory

e When a process arrives, it is allocated memory
from a hole large enough to accommodate it

e Operating system maintains information about:
a) allocated partitions  b) free partitions (hole)

0os 0os 0os 0os
process 5 process 5 process 5 process 5
process 9 process 9
process 8 —> —> —> process 10
process 2 process 2 process 2 process 2 a
£
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Dynamic Storage-Allocation Problem:
How to satisfy a request of size n from a list of free holes

m First-fit: Allocate the first hole that is big enough
m Best-fit: Allocate the smallest hole that is big enough
e Produces the smallest leftover hole
e Must search entire list, unless ordered by size
m Worst-fit: Allocate the largest hole
e Produces the largest leftover hole
e Must also search entire list, unless ordered by size

First-fit and best-fit are usually better than worst-fit
in terms of speed and storage utilization.
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&.-;,.__..;- Memory Fragmentation

® Internal Fragmentation —
allocated memory is often slightly larger than requested memory
(e.g., 64 bytes allocated for a request of 55 bytes); this size difference
is internal to a memory partition, but is not being used

m External Fragmentation —
many small holes exist between allocated memory partitions;
total memory space is available for a request, but it is not contiguous

m External fragmentation can be reduced by compaction

e Relocate memory contents to place all free memory together
in one large block

e Compaction is possible only if relocation is dynamic,
and is done at execution time

e 1/O problem
» Cannot relocate process while it is involved in I/O
» Do I/O only into OS buffers /-"‘\
""».. |
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iy & Paging

m Paging avoids external fragmentation (and compaction) entirely
e Internal fragmentation problem remains

m Divide logical memory into blocks of same size called pages
(size is power of 2, typically between 512 bytes and 8,192 bytes)

m Divide physical memory into fixed-sized blocks called frames
(size of a frame is the same as page size)

B Set up a page table to translate logical to physical addresses
Keep track of all free frames

m Then, logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is available

® To run a program of size n pages, find n free frames and load the program

iy
/:;. S
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“%7/Paging: Address Translation Scheme

m Logical address generated by CPU is divided into:

e Page number (p) —
used as an index into a page table
which contains the base address of each page in physical memory

e Page offset (d) —
is combined with base address to define the physical memory address
that is sent to the memory unit

m  Example for a given logical address space of 2™and a page size of 2"

page number page offset
p d
m-n n

o =
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x.:?,.-f Paging Hardware
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x,..-z Paging: Tiny Example

Assume a 32-byte memory
with 4-byte pages

- 5-bit address space,
divided into

- 3 bits for page number,
and

- 2 bits for page offset
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“%7/ Paging: Allocation, Free Frames
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“»Paging: Implementation of Page Table

Page table is kept in main memory
Page-table base register (PTBR) in CPU points to the page table
Page-table length register (PRLR) indicates size of the page table

In this scheme, every data and instruction access
requires two memory accesses:

e one access two the page table, and
e one access for the actual data/instruction.

B Unless treated, this results in running all programs at half the speed!

M
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“»Paging: Translation Look-aside Buffer

m Translation Look-aside Buffer (TLB)

e a special fast-lookup hardware cache

e solves the two memory access problem

e implemented in hardware as an associative memory
B Associative memory implements parallel search

Page # Frame #
Py f,
P2 f
P3 fs
P4 fs

Address translation from logical address (p, d) to physical address (f, d)
e If page p, is in associative memory, get frame number f, out

e Otherwise, get frame number f from page table in memory
and update TLB S
P £D
b
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r & Paging Hardware With TLB
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r.d Paging: Memory Protection

® Memory protection can be easily implemented in paging scheme
by associating a set of protection bits with each frame

m Valid-invalid bit attached to each entry in the page table:

e ‘“valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

e ‘“invalid” indicates that the page is not in the process’
logical address space

® Read, write, execute hits control valid access types to pages
e Write access may be denied to shared libraries

e Execute access may be denied to data and stack memory
(quite effective for virus protection!)
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“$% paging: Valid/invalid Bit In Page Table
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x,‘;‘f- Paging: Shared Pages

® Shared code

e One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, GUI systems).

e Shared code must appear in same location in the logical
address space of all processes

® Private code and data
e Each process keeps a separate copy of the code and data

e The pages for the private code and data can appear
anywhere in the logical address space

- =
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“»”/ Paging: Shared Pages Example
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- Structure of the Page Table

®m Hierarchical Paging

m Hashed Page Tables

®m Inverted Page Tables
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r & Hierarchical Page Tables

® Break up the logical address space into multiple page tables
m A simple technique is a two-level page table
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r & Two-Level Paging Example

B A logical address (on 32-bit machine with 4K page size) is divided into:
e a page number consisting of 2x10 bits
e a page offset consisting of 12 bits

m  Since the page table is paged, the page number is further divided into:
e a 20-bit page number (10 bits for level 1, 10 bits for level 2)
e a 12-hit page offset

B Thus, a logical address is composed as follows:

page number | page offset

Py P2 d

10 10 12

where p, is an index into the outer page table,
and p, is an index into the inner page table,
and d the displacement within the page
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B Address-Translation Scheme
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“#7  Multi-level Paging Scheme

m For 64-bit machines, 2-level paging is no longer appropriate
e For 4K pages, the outer page table would contain 242 x 4 bytes!

outer page inner page offset
P1 P2 d
42 10 12

e Using 3 levels of paging, the 2" outer page is still daunting
with 234 bytes!

2nd outer page , outer page _ innerpage  offset
P P2 Ps d |
32 10 10 12

e Thus, 4 or more levels would be needed...

£
A8
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¥ & Hashed Page Tables

® Common in address spaces > 32 bits

®  The virtual page number is hashed into a page table

e This page table contains a chain of elements
hashing to the same location

m Virtual page numbers are compared in this chain
searching for a match

e If a match is found, the corresponding physical frame is

extracted
= r‘",";‘ b
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r & Inverted Page Tables

m  Usually, every process has its own associated page table
(which may consume a large amount of memory space)

® Inverted Page Table:
One entry for each real page of memory

m  Entry consists of the virtual address
of the page stored in that real memory location,
with information about the process that owns that page

m Decreases memory needed to store the page table,
but increases time needed to search the table
when a page reference occurs

m Use hash table to limit the search to one — or at most a few —
page-table entries
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5 Inverted Page Tables
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rd Segmentation

® Segmentation is an alternative to paging
®  Memory-management scheme that supports user view of memory
m A program is a collection of segments
e In the programmer’s view, a segment is a logical unit such as:
main program
procedure / function / method
object
local variables, global variables

shared memory block

stack
symbol table
f“"‘\
= r‘*,-';\ bl
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“$Egmentation: Programmer’s View of a Program

subroutine

logical address f.x\
A yﬁ,t bl
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“%7/  Logical View of Segmentation

user space physical memory space
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r & Segmentation Architecture

Logical address consists of a tuple:

<segment-number, offset>,
Segment table — maps segment-number to physical address
m Each table entry has:

e Base -

starting physical address where the segment resides in memory
e Limit-

length of the segment

m Segment-table base register (STBR)
points to the segment table’s location in memory

m Segment-table length register (STLR)
indicates number of segments used by a program

e segment number s is legal if s < STLR
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Segmentation Hardware

limit |base

segment
table

CPU

Y
trap: addressing error

Operating System Concepts — 8" Edition 8.45

A 4

physical memory

Silberschatz, Galvin and Gagne ©2009

T

ik o/

Example of Segmentation
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“»Segmentation: Sharing and Protection

m Protection
e Similar to protection bits in paging scheme
e With each entry in segment table, associate:
» validation bit, if 0 = illegal segment
» read/write/execute privileges
m Code and data sharing can occur naturally at segment level

m  Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

|
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