
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 8: Main Memory

(slides improved by R. Doemer, 05/18/10)

8.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 8: Memory Management

 Background

 Swapping

 Contiguous Memory Allocation

 Paging

 Structure of the Page Table

 Segmentation

 Example: The Intel Pentium

(slide modified by R. Doemer, 05/17/10)

8.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To provide a detailed description of various ways of organizing
memory hardware

 To discuss various memory-management techniques,
including paging and segmentation

 To provide a detailed description of the Intel Pentium, which
supports both pure segmentation and segmentation with paging

(slide modified by R. Doemer, 05/17/10)

8.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Program must be brought (from disk) into memory and placed
within a process for it to be run

 Main memory and registers are the only storage
the CPU can access directly

 Register access in one CPU clock cycle (or less)

 Main memory access can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory is required to ensure safe cooperation
of processes

(slide modified by R. Doemer, 05/17/10)

8.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space

8.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses
can happen at three different stages

 Compile time: If memory location is known a priori,
compiler can generate absolute code;
must recompile code if starting location changes

 Load time: Compiler must generate relocatable code
if memory location is not known at compile time;
Loader completes address binding

 Execution time: Address binding can be delayed until run time
if the process can be moved during its execution
from one memory segment to another;
need hardware support in CPU for address mapping
(e.g., base and limit registers);
Memory Management Unit in CPU determines address binding

(slide modified by R. Doemer, 05/17/10)

8.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-Step Processing of a User Program

(slide modified by R. Doemer, 05/17/10)

Link time

Compile time

Load time

Run time

8.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dynamic Linking

 Dynamic Linking: Linking is postponed until execution time

 Dynamic linking is also known as shared libraries

 A small piece of code, a stub routine, is used to locate the
appropriate memory-resident library routine

 Stub replaces itself with the address of the routine,
and then executes the routine

 Operating system needed to check if routine is in the processes’
memory address

 Dynamic linking is particularly useful for libraries
(which then can be shared by multiple processes)

(slide modified by R. Doemer, 05/17/10)

8.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical vs. Physical Address Space

 The concept of a logical address space
that is bound to a separate physical address space
is central to proper memory management

 Logical address –
generated by the CPU; also referred to as virtual address

 Physical address –
address seen by the memory unit

 Logical and physical addresses are the same
in compile-time and load-time address-binding schemes

 Logical (virtual) and physical addresses differ
in execution-time address-binding scheme

(slide modified by R. Doemer, 05/17/10)

8.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Management Unit (MMU)

 Memory-Management Unit (MMU):
Hardware device that maps virtual to physical address

 In MMU scheme, the value in a relocation register is added
to every address generated by a user process
at the time it is sent to memory

 The user program deals with logical addresses;
it never sees the real physical addresses

(slide modified by R. Doemer, 05/17/10)

8.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Conceptual MMU with a Relocation Register

(slide modified by R. Doemer, 05/17/10)

8.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Swapping

 Swapping:
A process can be swapped temporarily out of memory to a backing store,
and then brought back into memory for continued execution

 Backing store – fast disk, large enough to accommodate copies
of all memory images for all processes;
must provide direct access to these memory images

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

 Major part of swap time is transfer time;
transfer time is directly proportional to the amount of memory swapped

 Roll out, roll in – swapping variant used for priority-based scheduling;
lower-priority process is swapped out so that a higher-priority process
can be loaded and executed

 Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows)

(slide modified by R. Doemer, 05/17/10)

8.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of Swapping

8.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Main memory is usually divided into two partitions:

 Resident operating system, usually held in low memory
with interrupt vector

 User processes then held in high memory

 Relocation registers are used to protect user processes from
each other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses –
each logical address must be less than the limit register

 MMU maps logical address to physical address dynamically
(at run time)

(slide modified by R. Doemer, 05/17/10)

8.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Hardware Support for Relocation and Limit Registers

(slide modified by R. Doemer, 05/17/10)

8.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Multiple-partition allocation

 Hole – block of available memory;
holes of various sizes are scattered throughout memory

 When a process arrives, it is allocated memory
from a hole large enough to accommodate it

 Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

(slide modified by R. Doemer, 05/17/10)

8.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough

 Produces the smallest leftover hole

 Must search entire list, unless ordered by size

 Worst-fit: Allocate the largest hole

 Produces the largest leftover hole

 Must also search entire list, unless ordered by size

Dynamic Storage-Allocation Problem:
How to satisfy a request of size n from a list of free holes

First-fit and best-fit are usually better than worst-fit
in terms of speed and storage utilization.

(slide modified by R. Doemer, 05/17/10)

8.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory Fragmentation

 Internal Fragmentation –
allocated memory is often slightly larger than requested memory
(e.g., 64 bytes allocated for a request of 55 bytes); this size difference
is internal to a memory partition, but is not being used

 External Fragmentation –
many small holes exist between allocated memory partitions;
total memory space is available for a request, but it is not contiguous

 External fragmentation can be reduced by compaction

 Relocate memory contents to place all free memory together
in one large block

 Compaction is possible only if relocation is dynamic,
and is done at execution time

 I/O problem

 Cannot relocate process while it is involved in I/O

 Do I/O only into OS buffers

(slide modified by R. Doemer, 05/18/10)

8.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging

 Paging avoids external fragmentation (and compaction) entirely

 Internal fragmentation problem remains

 Divide logical memory into blocks of same size called pages
(size is power of 2, typically between 512 bytes and 8,192 bytes)

 Divide physical memory into fixed-sized blocks called frames
(size of a frame is the same as page size)

 Set up a page table to translate logical to physical addresses

 Keep track of all free frames

 Then, logical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is available

 To run a program of size n pages, find n free frames and load the program

(slide modified by R. Doemer, 05/18/10)

8.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Logical and Physical Memory

(slide modified by R. Doemer, 05/18/10)

8.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Address Translation Scheme

 Logical address generated by CPU is divided into:

 Page number (p) –
used as an index into a page table
which contains the base address of each page in physical memory

 Page offset (d) –
is combined with base address to define the physical memory address
that is sent to the memory unit

 Example for a given logical address space of 2m and a page size of 2n

page number page offset

p d

m - n n

(slide modified by R. Doemer, 05/18/10)

8.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware

8.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Tiny Example

Assume a 32-byte memory
with 4-byte pages

- 5-bit address space,
divided into

- 3 bits for page number,
and

- 2 bits for page offset

(slide modified by R. Doemer, 05/18/10)

8.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Allocation, Free Frames

Before process allocation After process allocation

(slide modified by R. Doemer, 05/18/10)

8.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) in CPU points to the page table

 Page-table length register (PRLR) indicates size of the page table

 In this scheme, every data and instruction access
requires two memory accesses:

 one access two the page table, and

 one access for the actual data/instruction.

 Unless treated, this results in running all programs at half the speed!

(slide modified by R. Doemer, 05/18/10)

8.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Translation Look-aside Buffer

 Translation Look-aside Buffer (TLB)

 a special fast-lookup hardware cache

 solves the two memory access problem

 implemented in hardware as an associative memory

 Associative memory implements parallel search

Address translation from logical address (p, d) to physical address (f, d)

 If page pi is in associative memory, get frame number fi out

 Otherwise, get frame number f from page table in memory
and update TLB

(slide modified by R. Doemer, 05/18/10)

Page # Frame #

p1
p2
p3

p4

f1
f2
f3
f4

8.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging Hardware With TLB

(slide modified by R. Doemer, 05/18/10)

8.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Memory Protection

 Memory protection can be easily implemented in paging scheme
by associating a set of protection bits with each frame

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Read, write, execute bits control valid access types to pages

 Write access may be denied to shared libraries

 Execute access may be denied to data and stack memory
(quite effective for virus protection!)

 etc.

(slide modified by R. Doemer, 05/18/10)

8.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Valid/Invalid Bit In Page Table

(slide modified by R. Doemer, 05/18/10)

8.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Shared Pages

 Shared code

 One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, GUI systems).

 Shared code must appear in same location in the logical
address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear
anywhere in the logical address space

(slide modified by R. Doemer, 05/18/10)

8.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Paging: Shared Pages Example

(slide modified by R. Doemer, 05/18/10)

8.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

8.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

(slide modified by R. Doemer, 05/18/10)

8.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

 A logical address (on 32-bit machine with 4K page size) is divided into:

 a page number consisting of 2x10 bits

 a page offset consisting of 12 bits

 Since the page table is paged, the page number is further divided into:

 a 20-bit page number (10 bits for level 1, 10 bits for level 2)

 a 12-bit page offset

 Thus, a logical address is composed as follows:

where p1 is an index into the outer page table,
and p2 is an index into the inner page table,
and d the displacement within the page

page number page offset

p1 p2 d

10 10 12

(slide modified by R. Doemer, 05/18/10)

8.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-Level Paging Example

 Address-Translation Scheme

(slide modified by R. Doemer, 05/18/10)

8.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multi-level Paging Scheme

 For 64-bit machines, 2-level paging is no longer appropriate

 For 4K pages, the outer page table would contain 242 x 4 bytes!

 Using 3 levels of paging, the 2nd outer page is still daunting
with 234 bytes!

 Thus, 4 or more levels would be needed…

(slide modified by R. Doemer, 05/18/10)

8.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements
hashing to the same location

 Virtual page numbers are compared in this chain
searching for a match

 If a match is found, the corresponding physical frame is
extracted

(slide modified by R. Doemer, 05/18/10)

8.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Hashed Page Tables

(slide modified by R. Doemer, 05/18/10)

8.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Tables

 Usually, every process has its own associated page table
(which may consume a large amount of memory space)

 Inverted Page Table:
One entry for each real page of memory

 Entry consists of the virtual address
of the page stored in that real memory location,
with information about the process that owns that page

 Decreases memory needed to store the page table,
but increases time needed to search the table
when a page reference occurs

 Use hash table to limit the search to one — or at most a few —
page-table entries

(slide modified by R. Doemer, 05/18/10)

8.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Inverted Page Tables

(slide modified by R. Doemer, 05/18/10)

8.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation

 Segmentation is an alternative to paging

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 In the programmer’s view, a segment is a logical unit such as:

main program

procedure / function / method

object

local variables, global variables

shared memory block

stack

symbol table

(slide modified by R. Doemer, 05/18/10)

8.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation: Programmer’s View of a Program

(slide modified by R. Doemer, 05/18/10)

8.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Architecture

 Logical address consists of a tuple:

<segment-number, offset>,

 Segment table – maps segment-number to physical address

 Each table entry has:

 Base –
starting physical address where the segment resides in memory

 Limit –
length of the segment

 Segment-table base register (STBR)
points to the segment table’s location in memory

 Segment-table length register (STLR)
indicates number of segments used by a program

 segment number s is legal if s < STLR

(slide modified by R. Doemer, 05/18/10)

8.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation Hardware

8.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Segmentation

8.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Segmentation: Sharing and Protection

 Protection

 Similar to protection bits in paging scheme

 With each entry in segment table, associate:

 validation bit, if 0  illegal segment

 read/write/execute privileges

 Code and data sharing can occur naturally at segment level

 Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

(slide modified by R. Doemer, 05/18/10)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 8

