
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 9: Virtual Memory

(slides improved by R. Doemer, 05/27/10)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Memory-Mapped Files

 Page Replacement

 Allocation of Frames

 Thrashing

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

(slide modified by R. Doemer, 05/27/10)

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of

 demand paging,

 page-replacement algorithms, and

 allocation of page frames

 To discuss the principle of the working-set model

(slide modified by R. Doemer, 05/25/10)

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Virtual memory –
complete separation of user logical memory from physical memory.

 Only part of a program needs to be in memory for its execution

 Logical address space can therefore be much larger
than physical address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

(slide modified by R. Doemer, 05/25/10)

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory

9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Address Space

(slide modified by R. Doemer, 05/25/10)

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Library Using Virtual Memory

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed
 when a CPU instruction references an address in it (e.g. load, store)

 Page Fault

 invalid reference abort

 not-in-memory bring to memory

 Lazy swapper –
never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager

(slide modified by R. Doemer, 05/25/10)

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v valid, in-memory, i invalid, or not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i
 page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

(slide modified by R. Doemer, 05/25/10)

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

 If a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference abort

 Just not in memory goto step 2

2. Get empty frame

3. Swap page into frame

4. Update tables

5. Set valid-invalid bit to v

6. Restart the instruction that caused the page fault

(slide modified by R. Doemer, 05/25/10)

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

update
page
tables

(slide modified by R. Doemer, 05/25/10)

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Handling a Page Fault

 Restart instruction:

 sometimes not trivial!

 Special care may need to be taken!

 Example 1: block move instruction where blocks span multiple pages

 Example 2: auto increment/decrement instruction

(slide modified by R. Doemer, 05/25/10)

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Additional Virtual Memory Benefits

 Virtual memory allows other benefits:

- During Process Creation: Copy-on-Write

- Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write

 Consider parent process forks a child process

 Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are
copied

 Free pages are allocated from a pool of zeroed-out pages

(slide modified by R. Doemer, 05/25/10)

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 Before Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 After Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated
as regular memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging.

 A page-sized portion of the file is read from the file system into a physical
memory frame.

 Subsequent reads/writes to/from the file are treated as ordinary memory
accesses.

 Simplifies file access by treating file I/O as ordinary memory access
rather than read()and write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

(slide modified by R. Doemer, 05/25/10)

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory

 When handling a page fault,
what happens if there is no free frame?

 Page replacement –
find some page in memory, that is not really in use, swap it out

 Algorithm needed to find victim page

 Performance – we want an algorithm
which will result in minimum number of page faults

 Thus, same page may be brought into memory several times

(slide modified by R. Doemer, 05/27/10)

9.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

 Prevent over-allocation of memory
by modifying page-fault service routine to include page replacement

 Page replacement completes separation
between logical memory and physical memory –
large virtual memory can be provided on a smaller physical memory!

 To replace a page, any modified contents need to be written to storage

 Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

(slide modified by R. Doemer, 05/27/10)

9.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

Extended page fault service routine:

 Page fault, find the location of the desired page on disk

 Find a free frame:
- If there is a free frame,

use the free frame
- If there is no free frame,

use page replacement algorithm to select a victim frame
if modified/dirty, swap out the victim page

 Bring the desired page into the (new) free frame

 Update the page and frame tables

 Restart the instruction

(slide modified by R. Doemer, 05/27/10)

9.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

Update page
table for
new page

(slide modified by R. Doemer, 05/25/10)

9.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Many page replacement algorithms are possible

 Want lowest page-fault rate

 Evaluate algorithm by running it
on a particular string of memory references (reference string) and
counting the number of page faults on that string

 In the following examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(slide modified by R. Doemer, 05/27/10)

9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

(slide modified by R. Doemer, 05/27/10)

9.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 Belady’s Anomaly: more frames more page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

(slide modified by R. Doemer, 05/27/10)

9.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Faults Versus The Number of Frames

General expectation:

(slide modified by R. Doemer, 05/25/10)

9.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Optimal Algorithm: For comparison only!
Used for measuring how well other algorithms perform.

1

2

3

4

6 page faults

4 5

(slide modified by R. Doemer, 05/27/10)

9.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Possible implementation by counters/clock

 Every page entry has a counter/clock associated with it

 Every time a page is referenced, copy clock into its counter

 When a page needs to be changed,
find the smallest counter to determine which page to replace

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

8 page faults

(slide modified by R. Doemer, 05/27/10)

9.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

 Alternative implementation by use of a stack –
keep a stack of page numbers in a doubly linked list:

 Whenever a page is referenced

move it to the top

 Requires 6 pointers to be changed

 No search needed for replacement

(slide modified by R. Doemer, 05/27/10)

9.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Approximation Algorithms

 LRU Algorithm is quite expensive to implement
 LRU approximation algorithms are often used instead

 Reference bit
 With each page associate a bit, initially set to 0

 When page is referenced, set bit to 1 (in hardware)

 Replace a page whose bit is 0 (if one exists)

We do not know the order, however

 Second chance algorithm (aka. Clock algorithm)
 Use FIFO replacement as basic algorithm

 Add a reference bit as above

 Consider pages to be replaced in circular order (clock order)

 If a page is to be replaced

 if reference bit = 1, then reset bit = 0 and leave page in memory

 if reference bit = 0, replace this page

(slide modified by R. Doemer, 05/27/10)

9.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Approximation Algorithms

 Second-Chance (Clock) Page Replacement Algorithm

(slide modified by R. Doemer, 05/27/10)

9.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Example: FIFO Algorithm

 15 page faults

(slide modified by R. Doemer, 05/27/10)

9.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

(slide modified by R. Doemer, 05/27/10)

 Example: Optimal Algorithm

 9 page faults

9.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

(slide modified by R. Doemer, 05/27/10)

 Example: LRU Algorithm

 12 page faults

9.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Alternative Algorithms include Counting Algorithms

 Keep a counter of the number of references
that have been made to each page

 LFU Algorithm: least-frequently used replacement

 replaces page with smallest count

 frequently used pages stay in memory

 MFU Algorithm: most-frequently used replacement

 replaces page with largest count

 based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

(slide modified by R. Doemer, 05/27/10)

9.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation of Frames

 Each process needs a minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Allocation of Frames:
Two major schemes exist

 Fixed allocation

 Priority allocation

(slide modified by R. Doemer, 05/27/10)

9.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fixed Allocation

 Equal allocation –
For example, if there are 100 frames and 5 processes,
give each process 20 frames.

 Proportional allocation –
Allocate according to the size of the process
Example:

m
S
s

pa

m

sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2

a

a

s

s

m

i

(slide modified by R. Doemer, 05/27/10)

9.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities
rather than size

 If process Pi generates a page fault,

 select for replacement one of its own frames, or

 select for replacement a frame from a process
with lower priority number

 Global replacement –
select a replacement frame from the set of all frames;
one process can take a frame from another

 Local replacement –
select a replacement frame from only processes’ own
set of allocated frames

(slide modified by R. Doemer, 05/27/10)

9.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing

 If a process has “not enough” pages, the page-fault rate is very high.

 This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of
multiprogramming

 another process is added to the system

 even less pages become available…

 Thrashing a process is constantly swapping pages in and out

(slide modified by R. Doemer, 05/27/10)

9.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing Phenomenon

(slide modified by R. Doemer, 05/27/10)

9.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging and Thrashing

 Why does demand paging work?

 Locality model

 Process migrates from one locality to another

 Localities may overlap

 When does thrashing occur?

 size of locality > available memory size

(slide modified by R. Doemer, 05/27/10)

9.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Locality In A Memory-Reference Pattern

9.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-Set Model

 working-set window a fixed number of page references
Example: sequence of 10,000 instructions

 WSSi (working set size of Process Pi) =
total number of pages referenced in the most recent
(varies in time)

 if is too small, it will not encompass the entire locality

 if is too large, it will encompass several localities

 if = , it will encompass the entire program

 D = WSSi total demand of frames of all processes

 if D > m Thrashing occurs!

 Policy:
if D > m, then suspend (swap out) one of the processes

(slide modified by R. Doemer, 05/27/10)

9.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-Set Model

(slide modified by R. Doemer, 05/27/10)

9.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Keeping Track of the Working Set

 Approximation with

 interval timer

 a reference bit in hardware

 Set of reference bits associated with each page

 Example: = 10,000 time units

 Timer interrupts after every 5000 time units

 Keep in memory 2 additional bits for each page

 Whenever the timer interrupts,
shift the bits in memory,
copy the hardware bits to the first bit in memory, and
set the values of all hardware reference bits to 0

 If one of the memory bits = 1 page in working set

 Why is this not completely accurate?

 Can’t tell when exactly reference occurred

 Improvement: 10 bits and interrupt every 1000 time units

(slide modified by R. Doemer, 05/27/10)

9.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Program Structure

 Program structure

 int data[128,128];

 Each row is stored in one page

 Program 1

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

 Program 2

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

(slide fixed by R. Doemer, 02/02/09)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 9

