
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 9: Virtual Memory

(slides improved by R. Doemer, 05/27/10)

9.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 9: Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Memory-Mapped Files

 Page Replacement

 Allocation of Frames

 Thrashing

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

(slide modified by R. Doemer, 05/27/10)

9.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the benefits of a virtual memory system

 To explain the concepts of

 demand paging,

 page-replacement algorithms, and

 allocation of page frames

 To discuss the principle of the working-set model

(slide modified by R. Doemer, 05/25/10)

9.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Background

 Virtual memory –
complete separation of user logical memory from physical memory.

 Only part of a program needs to be in memory for its execution

 Logical address space can therefore be much larger
than physical address space

 Allows address spaces to be shared by several processes

 Allows for more efficient process creation

 Virtual memory can be implemented via:

 Demand paging

 Demand segmentation

(slide modified by R. Doemer, 05/25/10)

9.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory That is Larger Than Physical Memory



9.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Address Space

(slide modified by R. Doemer, 05/25/10)

9.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shared Library Using Virtual Memory

9.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed
 when a CPU instruction references an address in it (e.g. load, store)

 Page Fault

 invalid reference  abort

 not-in-memory  bring to memory

 Lazy swapper –
never swaps a page into memory unless page will be needed

 Swapper that deals with pages is a pager

(slide modified by R. Doemer, 05/25/10)

9.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Transfer of a Paged Memory to Contiguous Disk Space

9.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated
(v  valid, in-memory, i  invalid, or not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During address translation, if valid–invalid bit in page table entry is i
 page fault

v
v
v

v
i

i
i

….

Frame # valid-invalid bit

page table

(slide modified by R. Doemer, 05/25/10)

9.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Table When Some Pages Are Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Fault

 If a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault

1. Operating system looks at another table to decide:

 Invalid reference  abort

 Just not in memory  goto step 2

2. Get empty frame

3. Swap page into frame

4. Update tables

5. Set valid-invalid bit to v

6. Restart the instruction that caused the page fault

(slide modified by R. Doemer, 05/25/10)

9.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Steps in Handling a Page Fault

update
page
tables

(slide modified by R. Doemer, 05/25/10)

9.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Handling a Page Fault

 Restart instruction:

 sometimes not trivial!

 Special care may need to be taken!

 Example 1: block move instruction where blocks span multiple pages

 Example 2: auto increment/decrement instruction

(slide modified by R. Doemer, 05/25/10)

9.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Additional Virtual Memory Benefits

 Virtual memory allows other benefits:

- During Process Creation: Copy-on-Write

- Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

9.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write

 Consider parent process forks a child process

 Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

 If either process modifies a shared page, only then is the page copied

 COW allows more efficient process creation as only modified pages are
copied

 Free pages are allocated from a pool of zeroed-out pages

(slide modified by R. Doemer, 05/25/10)

9.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 Before Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)

9.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Copy-on-Write Example

 After Process 1 Modifies Page C

(slide modified by R. Doemer, 05/25/10)

9.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

 Memory-mapped file I/O allows file I/O to be treated
as regular memory access by mapping a disk block to a page in memory.

 A file is initially read using demand paging.

 A page-sized portion of the file is read from the file system into a physical
memory frame.

 Subsequent reads/writes to/from the file are treated as ordinary memory
accesses.

 Simplifies file access by treating file I/O as ordinary memory access
rather than read()and write() system calls

 Also allows several processes to map the same file
allowing the pages in memory to be shared

(slide modified by R. Doemer, 05/25/10)

9.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

9.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual Memory

 When handling a page fault,
what happens if there is no free frame?

 Page replacement –
find some page in memory, that is not really in use, swap it out

 Algorithm needed to find victim page

 Performance – we want an algorithm
which will result in minimum number of page faults

 Thus, same page may be brought into memory several times

(slide modified by R. Doemer, 05/27/10)

9.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

 Prevent over-allocation of memory
by modifying page-fault service routine to include page replacement

 Page replacement completes separation
between logical memory and physical memory –
large virtual memory can be provided on a smaller physical memory!

 To replace a page, any modified contents need to be written to storage

 Use modify (dirty) bit to reduce overhead of page transfers –
only modified pages are written to disk

(slide modified by R. Doemer, 05/27/10)

9.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

Extended page fault service routine:

 Page fault, find the location of the desired page on disk

 Find a free frame:
- If there is a free frame,

use the free frame
- If there is no free frame,

use page replacement algorithm to select a victim frame
if modified/dirty, swap out the victim page

 Bring the desired page into the (new) free frame

 Update the page and frame tables

 Restart the instruction

(slide modified by R. Doemer, 05/27/10)

9.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement

Update page
table for
new page

(slide modified by R. Doemer, 05/25/10)

9.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Many page replacement algorithms are possible

 Want lowest page-fault rate

 Evaluate algorithm by running it
on a particular string of memory references (reference string) and
counting the number of page faults on that string

 In the following examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

(slide modified by R. Doemer, 05/27/10)

9.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

(slide modified by R. Doemer, 05/27/10)

9.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 3 frames (3 pages can be in memory at a time per process)

 4 frames

 Belady’s Anomaly: more frames  more page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

(slide modified by R. Doemer, 05/27/10)

9.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FIFO Illustrating Belady’s Anomaly

9.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Faults Versus The Number of Frames

General expectation:

(slide modified by R. Doemer, 05/25/10)

9.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 How do you know this?

 Optimal Algorithm: For comparison only!
Used for measuring how well other algorithms perform.

1

2

3

4

6 page faults

4 5

(slide modified by R. Doemer, 05/27/10)

9.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

 Possible implementation by counters/clock

 Every page entry has a counter/clock associated with it

 Every time a page is referenced, copy clock into its counter

 When a page needs to be changed,
find the smallest counter to determine which page to replace

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

8 page faults

(slide modified by R. Doemer, 05/27/10)

9.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Least Recently Used (LRU) Algorithm

 Alternative implementation by use of a stack –
keep a stack of page numbers in a doubly linked list:

 Whenever a page is referenced

move it to the top

 Requires 6 pointers to be changed

 No search needed for replacement

(slide modified by R. Doemer, 05/27/10)

9.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Approximation Algorithms

 LRU Algorithm is quite expensive to implement
 LRU approximation algorithms are often used instead

 Reference bit
 With each page associate a bit, initially set to 0

 When page is referenced, set bit to 1 (in hardware)

 Replace a page whose bit is 0 (if one exists)

We do not know the order, however

 Second chance algorithm (aka. Clock algorithm)
 Use FIFO replacement as basic algorithm

 Add a reference bit as above

 Consider pages to be replaced in circular order (clock order)

 If a page is to be replaced

 if reference bit = 1, then reset bit = 0 and leave page in memory

 if reference bit = 0, replace this page

(slide modified by R. Doemer, 05/27/10)

9.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

LRU Approximation Algorithms

 Second-Chance (Clock) Page Replacement Algorithm

(slide modified by R. Doemer, 05/27/10)

9.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Example: FIFO Algorithm

 15 page faults

(slide modified by R. Doemer, 05/27/10)

9.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

(slide modified by R. Doemer, 05/27/10)

 Example: Optimal Algorithm

 9 page faults

9.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

(slide modified by R. Doemer, 05/27/10)

 Example: LRU Algorithm

 12 page faults

9.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page Replacement Algorithms

 Alternative Algorithms include Counting Algorithms

 Keep a counter of the number of references
that have been made to each page

 LFU Algorithm: least-frequently used replacement

 replaces page with smallest count

 frequently used pages stay in memory

 MFU Algorithm: most-frequently used replacement

 replaces page with largest count

 based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

(slide modified by R. Doemer, 05/27/10)

9.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Allocation of Frames

 Each process needs a minimum number of pages

 Example: IBM 370 – 6 pages to handle SS MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

 Allocation of Frames:
Two major schemes exist

 Fixed allocation

 Priority allocation

(slide modified by R. Doemer, 05/27/10)

9.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Fixed Allocation

 Equal allocation –
For example, if there are 100 frames and 5 processes,
give each process 20 frames.

 Proportional allocation –
Allocate according to the size of the process
Example:

m
S
s

pa

m

sS

ps

i
ii

i

ii








 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2









a

a

s

s

m

i

(slide modified by R. Doemer, 05/27/10)

9.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities
rather than size

 If process Pi generates a page fault,

 select for replacement one of its own frames, or

 select for replacement a frame from a process
with lower priority number

 Global replacement –
select a replacement frame from the set of all frames;
one process can take a frame from another

 Local replacement –
select a replacement frame from only processes’ own
set of allocated frames

(slide modified by R. Doemer, 05/27/10)

9.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing

 If a process has “not enough” pages, the page-fault rate is very high.

 This leads to:

 low CPU utilization

 operating system thinks that it needs to increase the degree of
multiprogramming

 another process is added to the system

 even less pages become available…

 Thrashing  a process is constantly swapping pages in and out

(slide modified by R. Doemer, 05/27/10)

9.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thrashing Phenomenon

(slide modified by R. Doemer, 05/27/10)

9.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Demand Paging and Thrashing

 Why does demand paging work?

 Locality model

 Process migrates from one locality to another

 Localities may overlap

 When does thrashing occur?

  size of locality > available memory size

(slide modified by R. Doemer, 05/27/10)

9.45 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Locality In A Memory-Reference Pattern

9.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-Set Model

   working-set window  a fixed number of page references
Example: sequence of 10,000 instructions

 WSSi (working set size of Process Pi) =
total number of pages referenced in the most recent 
(varies in time)

 if  is too small, it will not encompass the entire locality

 if  is too large, it will encompass several localities

 if  = , it will encompass the entire program

 D =  WSSi  total demand of frames of all processes

 if D > m  Thrashing occurs!

 Policy:
if D > m, then suspend (swap out) one of the processes

(slide modified by R. Doemer, 05/27/10)

9.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Working-Set Model

(slide modified by R. Doemer, 05/27/10)

9.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Keeping Track of the Working Set

 Approximation with

 interval timer

 a reference bit in hardware

 Set of reference bits associated with each page

 Example:  = 10,000 time units

 Timer interrupts after every 5000 time units

 Keep in memory 2 additional bits for each page

 Whenever the timer interrupts,
shift the bits in memory,
copy the hardware bits to the first bit in memory, and
set the values of all hardware reference bits to 0

 If one of the memory bits = 1  page in working set

 Why is this not completely accurate?

 Can’t tell when exactly reference occurred

 Improvement: 10 bits and interrupt every 1000 time units

(slide modified by R. Doemer, 05/27/10)

9.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Page-Fault Frequency Scheme

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

9.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Other Issues – Program Structure

 Program structure

 int data[128,128];

 Each row is stored in one page

 Program 1

for (j = 0; j < 128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

 Program 2

for (i = 0; i < 128; i++)
for (j = 0; j < 128; j++)

data[i,j] = 0;

128 page faults

(slide fixed by R. Doemer, 02/02/09)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 9

