Chapter 9: Virtual Memory

(slides improved by R. Doemer, 05/27/10)

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

'l

Chapter 9: Virtual Memory

=YY
1

Background

Demand Paging
Copy-on-Write
Memory-Mapped Files
Page Replacement
Allocation of Frames
Thrashing

Allocating Kernel Memory
Other Considerations

Operating-System Examples

(slide modified by R. Doemer, 05/27/10)
Operating System Concepts — 81" Edition 9.2 Silberschatz, Galvin and Gagne ©20

™

|

r & Objectives

m To describe the benefits of a virtual memory system

m To explain the concepts of
e demand paging,
e page-replacement algorithms, and
e allocation of page frames

m To discuss the principle of the working-set model

£

[(®

(slide modified by R. Doemer, 05/25/10) b !
Operating System Concepts — 8" Edition 9.3 Silberschatz, Galvin and Gagne ©2009

™,

|

r & Background

® Virtual memory —
complete separation of user logical memory from physical memory.

e Only part of a program needs to be in memory for its execution

e Logical address space can therefore be much larger
than physical address space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

m Virtual memory can be implemented via:

e Demand paging
e Demand segmentation

(slide modified by R. Doemer, 05/25/10) .. 1.*
Operating System Concepts — 81" Edition 9.4 Silberschatz, Galvin and Gagne ©2009

[P

=

—a'-"‘MJ
iL""'?"_/_""Virtual Memory That is Larger Than Physical Memory

page 0

page 1
page 2

L =
=
\—*_ | EE D

mmtt TR
N EEE

N N
HEB

memory
map '\x_____/
page v physical
= memory
virtual
memory
=
oS
Operating System Concepts — 8 Edition 9.5 Silberschatz, Galvin and Gagne ©2009

-a'-"hJ
*h'f\i_/r -

Virtual Address Space

Max
stack
heap
data
code
[+]

(slide modified by R. Doemer, 05/25/10) .. ‘_'_‘

Operating System Concepts — 8" Edition 9.6 Silberschatz, Galvin and Gagne ©2009

; -..’.”\J-'ﬂ.
“#»”Shared Library Using Virtual Memory

stack stack
shared "
shared library pages shared library

heap heap

data data

code code
£
P =
Operating System Concepts — 8" Edition 9.7 Silberschatz, Galvin and Gagne ©2009

.
STk J N
r Demand Paging

® Bring a page into memory only when it is needed
e Less /O needed
o Less memory needed
e Faster response
e More users

m Page is needed
= when a CPU instruction references an address in it (e.g. load, store)

m Page Fault
e invalid reference = abort

e not-in-memory = bring to memory

m Lazy swapper —
never swaps a page into memory unless page will be needed

e Swapper that deals with pages is a pager

(slide modified by R. Doemer, 05/25/10) .. ©..*
Operating System Concepts — 81" Edition 9.8 Silberschatz, Galvin and Gagne ©2009

™

s"':*"_»"I"ransfer of a Paged Memory to Contiguous Disk Space

P N
program swap out o] 10 2[] 3]
= o0 st oL 703
" s8] e[Jio[11 [
12[a[415
program
B . swapin 1E|:|17;ha|;|19[_;|
20[Je1 [J22[J23[]
_— _JJ
main
memaory /,«“\\
Yy 35 .\‘
Operating System Concepts — 8" Edition 9.9 Silberschatz, Galvin and Gagne ©2009
™
Py . . .
» Valid-Invalid Bit
m With each page table entry a valid—invalid bit is associated
(v = valid, in-memory, i = invalid, or not-in-memory)
m Initially valid—invalid bit is set to i on all entries
Example of a page table snapshot:
Frame # valid-invalid bit
\Y
v
\Y
\
i
i
i
page table
m During address translation, if valid—invalid bit in page table entry is i /«-\
= page fault - ‘3_\]
(slide modified by R. Doemer, 05/25/10) . T

Operating System Concepts — 81" Edition 9.10 Silberschatz, Galvin and Gagne ©2009

™

Page Table When Some Pages Are Not in Main Memory

1]
1
1] A 2
5 valid-invalid ——
1 bit 3 - =
frame
I N ol
2| € of 4 A \"‘h_——,_, =
s D 1[. [N[] |
2| __
¢ E 3| 6 ¢ (] & [E
5 F 4 7 — .
59| [c] @] [E
] G 5' T 8
7| H 7L of F [e] @]
logical page table 10 mEE
memary |] L l]
1
- .
12 o
13
14
15
phwvsical memory
__/_C",;g
Operating System Concepts — 8" Edition 9.11 Silberschatz, Galvin and Gagne ©2009
™
Tk rd
rd Page Fault

m |f a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory = goto step 2
Get empty frame
Swap page into frame
Update tables
Set valid-invalid bit to v
Restart the instruction that caused the page fault

o oA w N

— = R
(slide modified by R. Doemer, 05/25/10) .. "

Operating System Concepts — 81" Edition 9.12 Silberschatz, Galvin and Gagne ©2009

“%7/ Steps in Handling a Page Fault

@) page is on
backing store ——
\/- -
operating
system
©)
reference trap
| @
load M
restart
instruction
free frame —
® O)
update i br_ing in
page missing page
tables
physical
memory /‘._
(slide modified by R. Doemer, 05/25/10)

Operating System Concepts — 81 Edition 9.13 Silberschatz, Galvin and Gagne ©2009

™

S Handling a Page Fault

B Restart instruction:
e sometimes not trivial!
e Special care may need to be taken!

m Example 1: block move instruction where blocks span multiple pages

A

m Example 2: auto increment/decrement instruction

- =
(slide modified by R. Doemer, 05/25/10) .. 1.*

Operating System Concepts — 81" Edition 9.14 Silberschatz, Galvin and Gagne ©2009

(.-.-"“‘J‘\ - . H
“»7/Additional Virtual Memory Benefits

® Virtual memory allows other benefits:
- During Process Creation: Copy-on-Write

- Memory-Mapped Files

(slide modified by R. Doemer, 05/25/10)

Operating System Concepts — 8" Edition 9.15 Silberschatz, Galvin and Gagne ©2009

r & Copy-on-Write

Consider parent process forks a child process

Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

m [f either process modifies a shared page, only then is the page copied

m COW allows more efficient process creation as only modified pages are
copied

B Free pages are allocated from a pool of zeroed-out pages

(slide modified by R. Doemer, 05/25/10) .. 1.*

Operating System Concepts — 81" Edition 9.16 Silberschatz, Galvin and Gagne ©2009

Copy-on-Write Example

m Before Process 1 Modifies Page C

physical
process, memory process,

-~

page A

I

[L——> pageB &

|—v page C —

_—

(slide modified by R. Doemer, 05/25/10)

Operating System Concepts — 8" Edition 9.17 Silberschatz, Galvin and Gagne ©2009

™

& Copy-on-Write Example

m After Process 1 Modifies Page C

physical
process, memory process,

| > page A

]
T — page B |
—

page C

= Copy of page C

_—

(slide modified by R. Doemer, 05/25/10)

Operating System Concepts — 81" Edition 9.18 Silberschatz, Galvin and Gagne ©2009

¥ & Memory-Mapped Files

® Memory-mapped file /O allows file 1/O to be treated
as regular memory access by mapping a disk block to a page in memory.

A file is initially read using demand paging.

m A page-sized portion of the file is read from the file system into a physical
memory frame.

B Subsequent reads/writes to/from the file are treated as ordinary memory
accesses.

m Simplifies file access by treating file /0O as ordinary memory access
rather than read(Q)and write() system calls

m Also allows several processes to map the same file
allowing the pages in memory to be shared

/.a“

(slide modified by R. Doemer, 05/25/10)
Operating System Concepts — 8" Edition 9.19 Silberschatz, Galvin and Gagne ©2009

bl
i?)

& Memory-Mapped Files

o 1
1 p——
1 I 2
r-r——4+- 3
- EEEEE R
2 - i3 3 et |-+ {8
8 Fd---rs =r b1
4 Fa=q ! i L : H
) ==l :I—-b 6 R ::||
6 —+-'-:—1-‘ i ,
v ! Ed g !
I Bt e 1 e =44 1 1,
processA : !'r____; 5 ==} <1 : I process B
virtual memory || : :vmual memory
(|) !
1
b L] L - -
B g 2 2l | N——
physical memory

|

Olzlsl4lsT6]

disk file
/.4"

(slide modified by R. Doemer, 05/25/10) S
Operating System Concepts — 81" Edition 9.20 Silberschatz, Galvin and Gagne ©2009

‘i,

& -:,}..‘f Virtual Memory

® When handling a page fault,
what happens if there is no free frame?

m Page replacement —
find some page in memory, that is not really in use, swap it out

e Algorithm needed to find victim page

e Performance — we want an algorithm
which will result in minimum number of page faults

B Thus, same page may be brought into memory several times

(slide modified by R. Doemer, 05/27/10) .| %.»
Operating System Concepts — 8" Edition 9.21 Silberschatz, Galvin and Gagne ©2009

r & Page Replacement

m Prevent over-allocation of memory
by modifying page-fault service routine to include page replacement

m Page replacement completes separation
between logical memory and physical memory —
large virtual memory can be provided on a smaller physical memory!

To replace a page, any modified contents need to be written to storage

Use modify (dirty) bit to reduce overhead of page transfers —
only modified pages are written to disk

(slide modified by R. Doemer, 05/27/10) . L,
Operating System Concepts — 81" Edition 9.22 Silberschatz, Galvin and Gagne ©2009

[P

o
¥ & Page Replacement

Extended page fault service routine:
m Page fault, find the location of the desired page on disk

® Find a free frame:
- If there is a free frame,
use the free frame
- If there is no free frame,
use page replacement algorithm to select a victim frame
if modified/dirty, swap out the victim page

® Bring the desired page into the (new) free frame

m Update the page and frame tables

® Restart the instruction

A
e r“l,-';‘ '\‘
(slide modified by R. Doemer, 05/27/10) .| &

Operating System Concepts — 8" Edition 9.23 Silberschatz, Galvin and Gagne @20‘5“9
.
L ' d
r Page Replacement

frame valid-invalid bit

- N
N

swap out
change victim
o li to invalid @Page ,I:l
L /

O) f| victim
Update page \
page table table for @
new page swap
desired

page in
physical
memory /-4“\
_.v“t,;\ N
(slide modified by R. Doemer, 05/25/10) .. ':

Operating System Concepts — 81" Edition 9.24 Silberschatz, Galvin and Gagne ©2009

p—
»”’ Page Replacement Algorithms

® Many page replacement algorithms are possible
Want lowest page-fault rate

m Evaluate algorithm by running it
on a particular string of memory references (reference string) and
counting the number of page faults on that string

m |n the following examples, the reference string is

1,2,3,41,2,5/1,2,3,4,5

(slide modified by R. Doemer, 05/27/10)

Operating System Concepts — 8" Edition 9.25 Silberschatz, Galvin and Gagne ©2009

| -..:”‘vag_
“%77 First-In-First-Out (FIFO) Algorithm

m Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

2 1 3 9 page faults

(slide modified by R. Doemer, 05/27/10) .. 1.*

Operating System Concepts — 81" Edition 9.26 Silberschatz, Galvin and Gagne ©2009

o vl : -
“%77 First-In-First-Out (FIFO) Algorithm

m Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)
114 s
2 1 3 9 page faults
s3] 2
m 4 frames
1 T 5 4
212 1 5 10 page faults
313 2
44| 3
m Belady’s Anomaly: more frames = more page faults ﬂ
(slide modified by R. Doemer, 05/27/_1_0) ,As,‘f
Operating System Concepts — 8t Edition 9.27 Silberschatz, Galvin and Gagne ©2009

Py
“$77FIFO lllustrating Belady’s Anomaly

16
14

number of page faults

N s O o O

-

1 2 3 4 5 6
number of frames

7

A

N
b5
009

Operating System Concepts — 8" Edition 9.28 Silberschatz, Galvin and Gagne ©2

B

“#"Page Faults Versus The Number of Frames

General expectation:

w 14 \.
E \ | | | |
83 12 t
3 N | | |
a 10 —
e | | | | |
B 8l
i |
3 | | | | |
s | |
=}
2 I l l l | :
1 1 1 1 1 1
1 2 3 4 5 6
number of frames
(slide modified by R. Doemer, 05/25/10) b5
Operating System Concepts — 8" Edition 9.29 Silberschatz, Galvin and Gagne ©2009
™

& Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

® How do you know this?

m Optimal Algorithm: For comparison only!
Used for measuring how well other algorithms perform.

Operating System Concepts — 81" Edition 9.30 Silberschatz, Galvin and Gagne ©2009

P .
“»" east Recently Used (LRU) Algorithm

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
1 1 1 1 5
21121121212 8 page faults
3 5 5 4 1|4
4 4 3 3 3

m Possible implementation by counters/clock

e Every page entry has a counter/clock associated with it
e Every time a page is referenced, copy clock into its counter

e When a page needs to be changed,
find the smallest counter to determine which page to replace

s
(slide modified by R. Doemer, 05/27/10) .. 5.*
Operating System Concepts — 8" Edition 9.31 Silberschatz, Galvin and Gagne ©2009
J-'?g.
‘k.:_____._---’ .
2" east Recently Used (LRU) Algorithm
m Alternative implementation by use of a stack —
keep a stack of page numbers in a doubly linked list:
e Whenever a page is referenced
» move it to the top
e Requires 6 pointers to be changed
e No search needed for replacement
reference string
0 O G O -2 (O S L [
a ||
a b
stack stack

before after T
a b f’- 23
L L

(slide modified by R. Doemer, 05/27/10) .. [.:*
Operating System Concepts — 81" Edition 9.32 Silberschatz, Galvin and Gagne ©2009

B

“»77 LRU Approximation Algorithms

by

m LRU Algorithm is quite expensive to implement
e LRU approximation algorithms are often used instead
m Reference bit
e With each page associate a bit, initially set to 0
e When page is referenced, set bit to 1 (in hardware)
e Replace a page whose bit is 0 (if one exists)
» We do not know the order, however
m Second chance algorithm (aka. Clock algorithm)
e Use FIFO replacement as basic algorithm
e Add a reference bit as above
e Consider pages to be replaced in circular order (clock order)
e If a page is to be replaced
» if reference bit = 1, then reset bit = 0 and leave page in memory
» if reference bit = 0, replace this page /M_\
Pt

™

(slide modified by R. Doemer, 05/27/10) . %~
Operating System Concepts — 8" Edition 9.33 Silberschatz, Galvin and Gagne ©2009
™
> ¥ . . .
> LRU Approximation Algorithms
m Second-Chance (Clock) Page Replacement Algorithm
reference pages reference pages
bits. bits.
[°] []
[o] [e]
victim (il [o]
¥ v
[1] [e]
o] (0]
(1] l_;\ [1] l_;\
[1]
circular queue of pages circular queue of pages . \\
@) /:;..,j
(slide modified by R. Doemer, 05/27/10) .. ‘

Operating System Concepts — 81" Edition 9.34 Silberschatz, Galvin and Gagne ©2009

=

“»”/ Page Replacement Algorithms

m Example: FIFO Algorithm

reference str[ng
2 0 3 0 4 2 3 0 3 2

7
1@
2| 2] [1]

page frames

m 15 page faults

)
(slide modified by R. Doemer, 05/27/10) . !‘_‘-
Operating System Concepts — 8 Edition 9.35 Silberschatz, Galvin and Gagne ©2009

™

%7/ Page Replacement Algorithms

m Example: Optimal Algorithm

reference string
7 0 2 0 3 0 4 2 3 03 21 2 017 01

page frames

[=[o[m]
EEIEY

[w]a]
W

m 9 page faults

o Tl
(slide modified by R. Doemer, 05/27/10) .. b N
Operating System Concepts — 8" Edition 9.36 Silberschatz, Galvin and Gagne ©2009

-
»”’ Page Replacement Algorithms

m Example: LRU Algorithm

reference string
f 01 2 0 3 0 4 2 3 0 3 2 1 2 06 v ¢ 0 1

page frames

m 12 page faults

f";:‘
(slide modified by R. Doemer, 05/27/10) .| &
Operating System Concepts — 8" Edition 9.37 Silberschatz, Galvin and Gagne ©2009

-
77 Page Replacement Algorithms

m Alternative Algorithms include Counting Algorithms

e Keep a counter of the number of references
that have been made to each page

e LFU Algorithm: least-frequently used replacement
» replaces page with smallest count

» frequently used pages stay in memory

e MFU Algorithm: most-frequently used replacement

» replaces page with largest count

» based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

(slide modified by R. Doemer, 05/27/10) .. L.*
Operating System Concepts — 81" Edition 9.38 Silberschatz, Galvin and Gagne ©2009

(8

™

h .
‘*-'_a_,-' Allocation of Frames

m Each process needs a minimum number of pages

® Example: IBM 370 - 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to

® Allocation of Frames:
Two major schemes exist

e Fixed allocation
e Priority allocation

/’-’“\‘
(slide modified by R. Doemer, 05/27/10) .. 5.
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 9.39

Z Fixed Allocation

m Equal allocation —
For example, if there are 100 frames and 5 processes,
give each process 20 frames.

m Proportional allocation —
Allocate according to the size of the process
Example:
—s; =size of process p; m =64
73 = Zsi Si = 10
—m = total number of frames s, =127
. S; 10
—a; =allocation for p; == xm a=-—-x64~5
! Ps ' 137
a, = 127 x64 ~ 59
137
»-'«)’_.;

(slide modified by R. Doemer, 05/27/10) .. 1.*

Operating System Concepts — 81" Edition 9.40 Silberschatz, Galvin and Gagne ©2009

. a Priority Allocation

m Use a proportional allocation scheme using priorities
rather than size

® [f process P, generates a page fault,
e select for replacement one of its own frames, or

e select for replacement a frame from a process
with lower priority number

m Global replacement —
select a replacement frame from the set of all frames;
one process can take a frame from another

m Local replacement —
select a replacement frame from only processes’ own
set of allocated frames

£

[(®

(slide modified by R. Doemer, 05/27/10)
Operating System Concepts — 8" Edition 9.41 Silberschatz, Galvin and Gagne ©2009

™,

|

i & Thrashing

m If a process has “not enough” pages, the page-fault rate is very high.
m This leads to:
e |ow CPU utilization

e operating system thinks that it needs to increase the degree of
multiprogramming

e another process is added to the system
e even less pages become available...

m Thrashing = a process is constantly swapping pages in and out

(slide modified by R. Doemer, 05/27/10) .. 1.*
Operating System Concepts — 81" Edition 9.42 Silberschatz, Galvin and Gagne ©2009

[P

™

“»”’ Thrashing Phenomenon

5 | thrashing
2
N
=
- |
o
(@]
degree of multiprogramming
£

P b

(slide modified by R. Doemer, 05/27/10) . 5.+

Operating System Concepts — 8t Edition 9.43 Silberschatz, Galvin and Gagne ©2009
™

W:j Demand Paging and Thrashing

Why does demand paging work?

Locality model
e Process migrates from one locality to another
e Localities may overlap

When does thrashing occur?
m ¥ size of locality > available memory size

£
N bl
(slide modified by R. Doemer, 05/27/10) .. %

Operating System Concepts — 81" Edition 9.44 Silberschatz, Galvin and Gagne ©2009

™

“%”/Locality In A Memory-Reference Pattern

Ao a_ausiu
32 7 =
!
4 a1 . ned ol
f 4
30 T
T
} | Al
i
< — o
g EES—————— | 3.1
% —
]
B F — — =hiE
E]
! , | A ==
L i | .I||
G r] J "
1 | i —
W] PP
g | iy
20
™
§ i w 1
2
g i
S 18 I i .
axecution time — -
./[";; 3
-5
Operating System Concepts — 8" Edition 9.45 Silberschatz, Galvin and Gagne ©2009

™

o Working-Set Model

m A =working-set window = a fixed number of page references
Example: sequence of 10,000 instructions

B WSS, (working set size of Process P)) =
total number of pages referenced in the most recent A
(varies in time)

e if Alis too small, it will not encompass the entire locality
e if Alistoo large, it will encompass several localities
e if A =o0, it will encompass the entire program

D = X WSS, = total demand of frames of all processes

if D > m = Thrashing occurs!

Policy:
if D > m, then suspend (swap out) one of the processes

£
A8
(slide modified by R. Doemer, 05/27/10) .. %

Operating System Concepts — 81" Edition 9.46 Silberschatz, Galvin and Gagne ©2009

—

™

|

r & Working-Set Model

page reference table
. ..2615777751623412344434344413234443444...

WS(t,) = {1,256,7) WS(t,) = (3.4}

<

(slide modified by R. Doemer, 05/27/10) .. L.
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 9.47

.-

"‘-"Fi}:i Keeping Track of the Working Set

B Approximation with

e interval timer

o areference bit in hardware

e Set of reference bits associated with each page
m Example: A = 10,000 time units

e Timer interrupts after every 5000 time units

e Keep in memory 2 additional bits for each page

e Whenever the timer interrupts,
shift the bits in memory,
copy the hardware bits to the first bit in memory, and
set the values of all hardware reference bits to 0

e If one of the memory bits = 1 = page in working set
m Why is this not completely accurate?

e Can't tell when exactly reference occurred
® Improvement: 10 bits and interrupt every 1000 time units

(slide modified by R. Doemer, 05/27/10) .. 1.*

Operating System Concepts — 81" Edition 9.48 Silberschatz, Galvin and Gagne ©2009

™
i —
> Page-Fault Frequency Scheme
m Establish “acceptable” page-fault rate
e If actual rate too low, process loses frame
e If actual rate too high, process gains frame
-
% increase number
= of frames
..g. upper bound
&
b4
lower bound
decrease number
of frames
number of frames
£
s -—‘v)l b
V-
Operating System Concepts — 8" Edition 9.49 Silberschatz, Galvin and Gagne ©2009
=

“»”/ Other Issues — Program Structure

® Program structure
e int data[128,128];

e Each row is stored in one page
e Program 1

for (j = 0; j < 128; j++
for (i = 0; i < 128; i++)
data[i,j] = O;

128 x 128 = 16,384 page faults

e Program 2
for (i = 0; i < 128; i++)
for (J = 0; j < 128; j++)
data[i,j] = O;

128 page faults /.x\
et %‘L"« N
(slide fixed by R. Doemer, 02/__92/@)
Operating System Concepts — 81" Edition 9.50 Silberschatz, Galvin and Gagne ©2009

End of Chapter 9

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

