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r & Objectives

m  To describe the benefits of a virtual memory system

m To explain the concepts of
e demand paging,
e page-replacement algorithms, and
e allocation of page frames

m To discuss the principle of the working-set model
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r & Background

® Virtual memory —
complete separation of user logical memory from physical memory.

e Only part of a program needs to be in memory for its execution

e Logical address space can therefore be much larger
than physical address space

e Allows address spaces to be shared by several processes
e Allows for more efficient process creation

m Virtual memory can be implemented via:

e Demand paging
e Demand segmentation
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“#»”Shared Library Using Virtual Memory
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r Demand Paging

®  Bring a page into memory only when it is needed
e Less /O needed
o Less memory needed
e Faster response
e More users

m  Page is needed
= when a CPU instruction references an address in it (e.g. load, store)

m  Page Fault
e invalid reference = abort

e not-in-memory = bring to memory

m  Lazy swapper —
never swaps a page into memory unless page will be needed

e Swapper that deals with pages is a pager
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» Valid-Invalid Bit
m  With each page table entry a valid—invalid bit is associated
(v = valid, in-memory, i = invalid, or not-in-memory)
m Initially valid—invalid bit is set to i on all entries
Example of a page table snapshot:
Frame # valid-invalid bit
\Y
v
\Y
\
i
i
i
page table
m  During address translation, if valid—invalid bit in page table entry is i /«-\
= page fault - ‘3_\ ]
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Page Table When Some Pages Are Not in Main Memory
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rd Page Fault

m |f a page is not in main memory,
the first reference to that page will trap to the operating system:

page fault
1. Operating system looks at another table to decide:
e Invalid reference = abort
e Just not in memory = goto step 2
Get empty frame
Swap page into frame
Update tables
Set valid-invalid bit to v
Restart the instruction that caused the page fault

o oA w N
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“%7/ Steps in Handling a Page Fault
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S Handling a Page Fault

B Restart instruction:
e sometimes not trivial!
e Special care may need to be taken!

m  Example 1: block move instruction where blocks span multiple pages

A

m Example 2: auto increment/decrement instruction

- =
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®  Virtual memory allows other benefits:
- During Process Creation: Copy-on-Write

- Memory-Mapped Files
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r & Copy-on-Write

Consider parent process forks a child process

Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

m [f either process modifies a shared page, only then is the page copied

m  COW allows more efficient process creation as only modified pages are
copied

B Free pages are allocated from a pool of zeroed-out pages
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Copy-on-Write Example

m Before Process 1 Modifies Page C

physical
process, memory process,

-~

page A

I

[ L——> pageB &

|—v page C —
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& Copy-on-Write Example

m  After Process 1 Modifies Page C

physical
process, memory process,

| > page A

]
T — page B |
—

page C

= Copy of page C

_—
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¥ & Memory-Mapped Files

®  Memory-mapped file /O allows file 1/O to be treated
as regular memory access by mapping a disk block to a page in memory.

A file is initially read using demand paging.

m A page-sized portion of the file is read from the file system into a physical
memory frame.

B Subsequent reads/writes to/from the file are treated as ordinary memory
accesses.

m  Simplifies file access by treating file /0O as ordinary memory access
rather than read(Q)and write() system calls

m  Also allows several processes to map the same file
allowing the pages in memory to be shared

/.a“
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& -:,}..‘f Virtual Memory

®  When handling a page fault,
what happens if there is no free frame?

m Page replacement —
find some page in memory, that is not really in use, swap it out

e Algorithm needed to find victim page

e Performance — we want an algorithm
which will result in minimum number of page faults

B Thus, same page may be brought into memory several times
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r & Page Replacement

m Prevent over-allocation of memory
by modifying page-fault service routine to include page replacement

m Page replacement completes separation
between logical memory and physical memory —
large virtual memory can be provided on a smaller physical memory!

To replace a page, any modified contents need to be written to storage

Use modify (dirty) bit to reduce overhead of page transfers —
only modified pages are written to disk
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¥ & Page Replacement

Extended page fault service routine:
m  Page fault, find the location of the desired page on disk

®  Find a free frame:
- If there is a free frame,
use the free frame
- If there is no free frame,
use page replacement algorithm to select a victim frame
if modified/dirty, swap out the victim page

®  Bring the desired page into the (new) free frame

m  Update the page and frame tables

® Restart the instruction

A
e r“l,-';‘ '\‘
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»”’  Page Replacement Algorithms

®  Many page replacement algorithms are possible
Want lowest page-fault rate

m  Evaluate algorithm by running it
on a particular string of memory references (reference string) and
counting the number of page faults on that string

m |n the following examples, the reference string is

1,2,3,41,2,5/1,2,3,4,5
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“%77 First-In-First-Out (FIFO) Algorithm

m  Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

2 1 3 9 page faults
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“%77 First-In-First-Out (FIFO) Algorithm

m  Reference string: 1, 2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)
114 s
2 1 3 9 page faults
s3] 2
m 4 frames
1 T 5 4
212 1 5 10 page faults
313 2
44| 3
m  Belady’s Anomaly: more frames = more page faults ﬂ
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“#"Page Faults Versus The Number of Frames

General expectation:
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& Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

®  How do you know this?

m  Optimal Algorithm: For comparison only!
Used for measuring how well other algorithms perform.
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“»" east Recently Used (LRU) Algorithm

m Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
1 1 1 1 5
21121121212 8 page faults
3 5 5 4 1|4
4 4 3 3 3

m Possible implementation by counters/clock

e Every page entry has a counter/clock associated with it
e Every time a page is referenced, copy clock into its counter

e When a page needs to be changed,
find the smallest counter to determine which page to replace

s
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2" east Recently Used (LRU) Algorithm
m Alternative implementation by use of a stack —
keep a stack of page numbers in a doubly linked list:
e Whenever a page is referenced
» move it to the top
e Requires 6 pointers to be changed
e No search needed for replacement
reference string
0 O G O -2 (O S L [
a ||
a b
stack stack

before after T
a b f’- 23
L L
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“»77  LRU Approximation Algorithms

by

m LRU Algorithm is quite expensive to implement
e LRU approximation algorithms are often used instead
m Reference bit
e With each page associate a bit, initially set to 0
e When page is referenced, set bit to 1 (in hardware)
e Replace a page whose bit is 0 (if one exists)
» We do not know the order, however
m Second chance algorithm (aka. Clock algorithm)
e Use FIFO replacement as basic algorithm
e Add a reference bit as above
e Consider pages to be replaced in circular order (clock order)
e If a page is to be replaced
» if reference bit = 1, then reset bit = 0 and leave page in memory
» if reference bit = 0, replace this page /M_\
Pt

™
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> LRU Approximation Algorithms
m Second-Chance (Clock) Page Replacement Algorithm
reference  pages reference  pages
bits. bits.
[°] []
[o] [e]
victim (il [o]
¥ v
[1] [e]
o] (0]
(1] l_;\ [1] l_;\
[1]
circular queue of pages circular queue of pages . \\
@ ) /:;..,j
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“»”/  Page Replacement Algorithms

m  Example: FIFO Algorithm

reference str[ng
2 0 3 0 4 2 3 0 3 2

7
1@
2| 2] [1]

page frames

m 15 page faults

)
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%7/ Page Replacement Algorithms

m  Example: Optimal Algorithm

reference string
7 0 2 0 3 0 4 2 3 03 21 2 017 01

page frames

[=[o[m]
EEIEY

[w]a]
W

m 9 page faults

o Tl
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»”’  Page Replacement Algorithms

m  Example: LRU Algorithm

reference string
f 01 2 0 3 0 4 2 3 0 3 2 1 2 06 v ¢ 0 1

page frames

m 12 page faults

f";:‘
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77 Page Replacement Algorithms

m  Alternative Algorithms include Counting Algorithms

e Keep a counter of the number of references
that have been made to each page

e LFU Algorithm: least-frequently used replacement
» replaces page with smallest count

» frequently used pages stay in memory

e MFU Algorithm: most-frequently used replacement

» replaces page with largest count

» based on the argument that the page with the smallest count
was probably just brought in and has yet to be used
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‘*-'_a_,-' Allocation of Frames

m Each process needs a minimum number of pages

® Example: IBM 370 - 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to

® Allocation of Frames:
Two major schemes exist

e Fixed allocation
e Priority allocation

/’-’“\‘
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Z Fixed Allocation

m Equal allocation —
For example, if there are 100 frames and 5 processes,
give each process 20 frames.

m Proportional allocation —
Allocate according to the size of the process
Example:
—s; =size of process p; m =64
73 = Zsi Si = 10
—m = total number of frames s, =127
. S; 10
—a; =allocation for p; == xm a=-—-x64~5
! Ps ' 137
a, = 127 x64 ~ 59
137
»-'«)’_.;
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. a Priority Allocation

m Use a proportional allocation scheme using priorities
rather than size

® [f process P, generates a page fault,
e select for replacement one of its own frames, or

e select for replacement a frame from a process
with lower priority number

m Global replacement —
select a replacement frame from the set of all frames;
one process can take a frame from another

m Local replacement —
select a replacement frame from only processes’ own
set of allocated frames

£

[(®

(slide modified by R. Doemer, 05/27/10)
Operating System Concepts — 8" Edition 9.41 Silberschatz, Galvin and Gagne ©2009

™,

|

i & Thrashing

m If a process has “not enough” pages, the page-fault rate is very high.
m This leads to:
e |ow CPU utilization

e operating system thinks that it needs to increase the degree of
multiprogramming

e another process is added to the system
e even less pages become available...

m Thrashing = a process is constantly swapping pages in and out
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“»”’  Thrashing Phenomenon

5 | thrashing
2
N
=
- |
o
(@]
degree of multiprogramming
£

P b
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W:j Demand Paging and Thrashing

Why does demand paging work?

Locality model
e Process migrates from one locality to another
e Localities may overlap

When does thrashing occur?
m ¥ size of locality > available memory size

£
N bl
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“%”/Locality In A Memory-Reference Pattern
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o Working-Set Model

m A =working-set window = a fixed number of page references
Example: sequence of 10,000 instructions

B WSS, (working set size of Process P)) =
total number of pages referenced in the most recent A
(varies in time)

e if Alis too small, it will not encompass the entire locality
e if Alistoo large, it will encompass several localities
e if A =o0, it will encompass the entire program

D = X WSS, = total demand of frames of all processes

if D > m = Thrashing occurs!

Policy:
if D > m, then suspend (swap out) one of the processes

£
A8
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r & Working-Set Model

page reference table
. ..2615777751623412344434344413234443444...

WS(t,) = {1,256,7) WS(t,) = (3.4}

<
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"‘-"Fi}:i Keeping Track of the Working Set

B Approximation with

e interval timer

o areference bit in hardware

e Set of reference bits associated with each page
m Example: A = 10,000 time units

e Timer interrupts after every 5000 time units

e Keep in memory 2 additional bits for each page

e Whenever the timer interrupts,
shift the bits in memory,
copy the hardware bits to the first bit in memory, and
set the values of all hardware reference bits to 0

e If one of the memory bits = 1 = page in working set
m  Why is this not completely accurate?

e Can't tell when exactly reference occurred
® Improvement: 10 bits and interrupt every 1000 time units
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> Page-Fault Frequency Scheme
m Establish “acceptable” page-fault rate
e If actual rate too low, process loses frame
e If actual rate too high, process gains frame
-
% increase number
= of frames
..g. upper bound
&
b4
lower bound
decrease number
of frames
number of frames
£
s -—‘v)l b
V-
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“»”/ Other Issues — Program Structure

® Program structure
e int data[128,128];

e Each row is stored in one page
e Program 1

for (j = 0; j < 128; j++
for (i = 0; i < 128; i++)
data[i,j] = O;

128 x 128 = 16,384 page faults

e Program 2
for (i = 0; i < 128; i++)
for (J = 0; j < 128; j++)
data[i,j] = O;

128 page faults /.x\
et %‘L"« N
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End of Chapter 9

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009




