
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 11:
File System Implementation

(slides improved by R. Doemer, 06/03/10)

11.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 11: File System Implementation

 File-System Structure

 File-System Implementation 

 Directory Implementation

 Allocation Methods

 Free-Space Management 

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

 Example: WAFL File System

(slide modified by R. Doemer, 06/03/10)



2

11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the details of implementing

 local file systems and

 directory structures

 To discuss

 block allocation and

 free-block algorithms and

 trade-offs

 To describe the implementation of remote file systems

(slide modified by R. Doemer, 06/03/10)

11.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system

 resides on secondary storage (disks)

 is organized into layers

 File control block

 storage structure
consisting of information
about a file

(slide modified by R. Doemer, 06/03/10)



3

11.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-Memory File System Structures

 Necessary file system structures provided by the operating system:

(a) Opening a file.

(a) Reading a file.

(slide modified by R. Doemer, 06/03/10)

11.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual File Systems

(slide modified by R. Doemer, 06/03/10)

 Virtual File Systems (VFS)

 provide an object-oriented way of implementing file systems.

 VFS allows the same system call interface (the API)
to be used for different types of file systems.

 The API is to the VFS interface, rather than any specific type of file system.

 Schematic view:



4

11.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Directory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the same location

 fixed size

11.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File Allocation Methods

 An allocation method refers to
how disk blocks are allocated for files:

 Contiguous Allocation

 Linked Allocation

 Indexed Allocation

(slide modified by R. Doemer, 06/03/10)



5

11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk

(slide modified by R. Doemer, 06/03/10)

11.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Contiguous allocation of disk space is:

 Simple

 only starting location (block #) and

 length (number of blocks) are required

 Supports random access

 see address mapping on next page

 Wasteful of space

 dynamic storage-allocation problem

 Files cannot grow

 Subsequent blocks may be occupied by other files

(slide modified by R. Doemer, 06/03/10)



6

11.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Mapping from logical to physical address in a file

 LA = Logical Address

 Q + starting address = block to be accessed

 R = displacement into block

LA / 512

Q

R

(quotient)

(remainder)

(slide modified by R. Doemer, 06/03/10)

11.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Extent-Based Systems

 Extend-based File System:

 Modified contiguous allocation scheme

 Used by many newer file systems

 i.e. Veritas File System

 Extent-based file systems allocate disk blocks in extents

 A file consists of one or more extents

 An extent is a contiguous block of disks

(slide modified by R. Doemer, 06/03/10)



7

11.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

16

1

10

25

Linked Allocation

 Each file is a linked list of disk blocks:

 Blocks may be scattered anywhere on the disk

 Block = pointer

data

(slide modified by R. Doemer, 06/03/10)

11.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

 Simple

 need only starting address and

 follow next block pointers

 Efficient free-space management system

 no waste of space 

 No random access

 Need to read blocks sequentially

 Mapping

 Block to be accessed is the Qth block
in the linked chain of blocks representing the file

 Displacement into block = R + 1

LA / 511
Q

R

(slide modified by R. Doemer, 06/03/10)



8

11.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File Allocation Table (FAT)

 File Allocation Table (FAT)

 Disk-space allocation used by MS-DOS and OS/2

 Relatively simple

 Efficient

 Random access

Only one additional
block to read

 Then follow sequence
in FAT

(slide modified by R. Doemer, 06/03/10)

11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Brings all block pointers together into the index block

 Logical view:

 Simple

 Efficient

 Random access

 Limited file size

Index table

(slide modified by R. Doemer, 06/03/10)



9

11.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Dynamic access without external fragmentation,
but have overhead of index block.

 Mapping from logical to physical address
in a file of maximum size of 256K words and
block size of 512 words.

 We need only 1 block for index table

 Q = displacement into index table

 R = displacement into block

LA / 512
Q

R

(slide modified by R. Doemer, 06/03/10)

11.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Mapping from logical to physical address
in a file of unbounded length (block size of 512 words)

 Linked scheme

 Link blocks of index table (no limit on size)

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 = displacement into block of file

(slide modified by R. Doemer, 06/03/10)



10

11.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation



outer-index

index table file

 Two-level index

(slide modified by R. Doemer, 06/03/10)

11.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Two-level index (maximum file size is 5123)

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 = displacement into block of file

(slide modified by R. Doemer, 06/03/10)



11

11.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

(slide modified by R. Doemer, 06/03/10)

 Combined Scheme: UNIX inode (with 4K bytes per block)

Indexed Allocation

11.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Many schemes are possible

 Linked free space list on disk

 See figure to the right

 No wasted space!

 Can be extended

– Grouping

– Counting

 Special “free space file”

 Allocation takes blocks
from this file

Often used in indexed
or FAT allocation

 Bit maps

 (omitted for EECS111)

(slide modified by R. Doemer, 06/03/10)



12

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 11


