
1

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 11:
File System Implementation

(slides improved by R. Doemer, 06/03/10)

11.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 11: File System Implementation

 File-System Structure

 File-System Implementation 

 Directory Implementation

 Allocation Methods

 Free-Space Management 

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

 Example: WAFL File System

(slide modified by R. Doemer, 06/03/10)



2

11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

 To describe the details of implementing

 local file systems and

 directory structures

 To discuss

 block allocation and

 free-block algorithms and

 trade-offs

 To describe the implementation of remote file systems

(slide modified by R. Doemer, 06/03/10)

11.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File-System Structure

 File structure

 Logical storage unit

 Collection of related information

 File system

 resides on secondary storage (disks)

 is organized into layers

 File control block

 storage structure
consisting of information
about a file

(slide modified by R. Doemer, 06/03/10)



3

11.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-Memory File System Structures

 Necessary file system structures provided by the operating system:

(a) Opening a file.

(a) Reading a file.

(slide modified by R. Doemer, 06/03/10)

11.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Virtual File Systems

(slide modified by R. Doemer, 06/03/10)

 Virtual File Systems (VFS)

 provide an object-oriented way of implementing file systems.

 VFS allows the same system call interface (the API)
to be used for different types of file systems.

 The API is to the VFS interface, rather than any specific type of file system.

 Schematic view:



4

11.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Directory Implementation

 Linear list of file names with pointer to the data blocks.

 simple to program

 time-consuming to execute

 Hash Table – linear list with hash data structure.

 decreases directory search time

 collisions – situations where two file names hash to the same location

 fixed size

11.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File Allocation Methods

 An allocation method refers to
how disk blocks are allocated for files:

 Contiguous Allocation

 Linked Allocation

 Indexed Allocation

(slide modified by R. Doemer, 06/03/10)



5

11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Each file occupies a set of contiguous blocks on the disk

(slide modified by R. Doemer, 06/03/10)

11.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Contiguous allocation of disk space is:

 Simple

 only starting location (block #) and

 length (number of blocks) are required

 Supports random access

 see address mapping on next page

 Wasteful of space

 dynamic storage-allocation problem

 Files cannot grow

 Subsequent blocks may be occupied by other files

(slide modified by R. Doemer, 06/03/10)



6

11.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Contiguous Allocation

 Mapping from logical to physical address in a file

 LA = Logical Address

 Q + starting address = block to be accessed

 R = displacement into block

LA / 512

Q

R

(quotient)

(remainder)

(slide modified by R. Doemer, 06/03/10)

11.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Extent-Based Systems

 Extend-based File System:

 Modified contiguous allocation scheme

 Used by many newer file systems

 i.e. Veritas File System

 Extent-based file systems allocate disk blocks in extents

 A file consists of one or more extents

 An extent is a contiguous block of disks

(slide modified by R. Doemer, 06/03/10)



7

11.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

16

1

10

25

Linked Allocation

 Each file is a linked list of disk blocks:

 Blocks may be scattered anywhere on the disk

 Block = pointer

data

(slide modified by R. Doemer, 06/03/10)

11.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linked Allocation

 Simple

 need only starting address and

 follow next block pointers

 Efficient free-space management system

 no waste of space 

 No random access

 Need to read blocks sequentially

 Mapping

 Block to be accessed is the Qth block
in the linked chain of blocks representing the file

 Displacement into block = R + 1

LA / 511
Q

R

(slide modified by R. Doemer, 06/03/10)



8

11.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

File Allocation Table (FAT)

 File Allocation Table (FAT)

 Disk-space allocation used by MS-DOS and OS/2

 Relatively simple

 Efficient

 Random access

Only one additional
block to read

 Then follow sequence
in FAT

(slide modified by R. Doemer, 06/03/10)

11.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Brings all block pointers together into the index block

 Logical view:

 Simple

 Efficient

 Random access

 Limited file size

Index table

(slide modified by R. Doemer, 06/03/10)



9

11.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Dynamic access without external fragmentation,
but have overhead of index block.

 Mapping from logical to physical address
in a file of maximum size of 256K words and
block size of 512 words.

 We need only 1 block for index table

 Q = displacement into index table

 R = displacement into block

LA / 512
Q

R

(slide modified by R. Doemer, 06/03/10)

11.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Mapping from logical to physical address
in a file of unbounded length (block size of 512 words)

 Linked scheme

 Link blocks of index table (no limit on size)

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 = displacement into block of file

(slide modified by R. Doemer, 06/03/10)



10

11.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation



outer-index

index table file

 Two-level index

(slide modified by R. Doemer, 06/03/10)

11.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Indexed Allocation

 Two-level index (maximum file size is 5123)

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 = displacement into block of file

(slide modified by R. Doemer, 06/03/10)



11

11.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

(slide modified by R. Doemer, 06/03/10)

 Combined Scheme: UNIX inode (with 4K bytes per block)

Indexed Allocation

11.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Free-Space Management

 Many schemes are possible

 Linked free space list on disk

 See figure to the right

 No wasted space!

 Can be extended

– Grouping

– Counting

 Special “free space file”

 Allocation takes blocks
from this file

Often used in indexed
or FAT allocation

 Bit maps

 (omitted for EECS111)

(slide modified by R. Doemer, 06/03/10)



12

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 11


