
EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 1

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 2

Lecture 1: Overview

• Course Administration
– New courses in Computer Engineering

– Course overview

– Course web pages

• Getting started
– Obtain an account on the EECS Linux server

– Work in the Linux system environment

• Review of C Programming
– History of C
– The first C Program, HelloWorld.c

– General program structure, Addition.c

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 2

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 3

Course Administration

• New programming courses in Computer Engineering
– EECS22, “Advanced C Programming”

– EECS22L, “Software Engineering Project in C”

• Replacing Physics 51A, 52A with EECS 22, 22L
– Expected in 2012/13 catalogue

• pending approval by the UCI Academic Senate

– Current students can opt to choose the new plan of study
• Automatic approval for taking 22/22L to fulfill the 52A/51A requirement

• Of course, you can still choose to take 52A/51A…

• EECS 22 offered in Fall 2011
– Instructor: Prof. Rainer Doemer

• EECS 22L to be offered in Winter 2012
– Instructor: Prof. Pai Chou

Course Administration

• Changes to Computer Engineering Program
– Delete Physics 51A and 52A from Math and Basic Science

– Add EECS 22 and EECS 22L to Core Courses

• Sample Program of Study

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 4

FALL WINTER SPRING
Freshman
Mathematics 2A Mathematics 2B Mathematics 2D
EECS12 Physics 7C/7LC Physics 7D, 7LD
General Education General Education EECS20
General Education General Education

Sophomore
Mathematics 2J Mathematics 3D Mathematics 6D
Physics 7E, 52A Physics 51A, 52B EECS40
EECS22 EECS22L EECS70B, 70LB
EECS31 EECS31L General Education
 EECS70A
Junior

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 3

EECS 22: Advanced C Programming

• “All you want to know about C Programming”
– Review and reinforce basic C programming concepts

– Study advanced features in detail

– Put concepts and tools to their best use

• Features
– Dynamic data structures using malloc(), free()

– Keywords 'static', 'register', 'auto', 'extern', 'volatile‘, …

– Advanced data types, Unicode, variable-length arguments

– Libraries, Makefile, …

• Tools
– C preprocessor, compiler, and linker

– Debugger ‘gdb’, profiler ‘gprof’, ‘gcov’, …

– Dynamic memory allocation checker ‘valgrind’

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 5

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 6

EECS 22: Advanced C Programming

• Catalogue Data
– EECS 22 Advanced C Programming

(Credit Units: 3) F.

– C language programming concepts.

– Control flow, function calls, recursion.

– Basic and composite data types, static and dynamic data
structures.

– Program modules and compilation units.

– Preprocessor macros.

– C standard libraries.

– Prerequisites: EECS 20

– (Design Units: 1)

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 4

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 7

EECS 22: Advanced C Programming

• Course Contents
– Review of C expressions, statements, control flow

– Primitive, composite, and user-defined data types

– Functions and parameter passing semantics

– Variable scope rules (global, static, auto, extern)

– Pointers and pointer arithmetic

– Dynamic memory allocation

– Dynamic data structures: linked lists, stacks, queues, trees

– Function pointers and callback

– Preprocessor definitions, conditionals, and macros

– Program modules, header files, compilation units

– Compilation and linking process, Makefile

– C standard library, external libraries

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 8

EECS 22L: Software Eng. Project in C

• “Developing real C Programs in a Team”
– Hands-on experience with larger software projects

– Introduction to software engineering
• Specification, documentation, implementation, testing

– Team work

• Features
– Design efficient data structures, APIs

– Utilize programming modules, build libraries

– Develop and optimize contemporary software applications

• Tools
– Scripting ‘make’

– Version control ‘cvs’

– Testing and debugging with ‘gdb’, ‘gprof’, ‘valgrind’, …

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 5

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 9

EECS 22L: Software Eng. Project in C

• Catalogue Data
– EECS 22L Software Engineering Project in C Language

(Credit Units: 3) W.

– Hands-on experience with the ANSI-C programming language.

– Medium-sized programming projects, team work.

– Software specification, documentation, implementation, testing.

– Definition of data structures and application programming
interface.

– Creation of program modules, linking with external libraries.

– Rule-based compilation, version control.

– Prerequisites: EECS 22

– (Design Units: 3)

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 10

EECS 22L: Software Eng. Project in C

• Course Contents
– Software engineering topics, including specification,

documentation, implementation, testing, debugging, project
planning, organization, maintenance, version control,
organization of source files, header files, modules

– Compilation flow, Makefile, shell scripting

– Definition of data structures and application programming
interface

– External libraries, system programming, POSIX API,
interrupts

– Introduction to C++ language, syntax and semantics,
references, inline functions, default arguments, classes,
members, and methods, object creation and deletion
(constructors, destructors)

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 6

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 11

Course Administration

• Course web pages online at
http://eee.uci.edu/11f/18056/
– Instructor information

– Course description and contents

– Course policies and resources

– Course schedule

– Homework assignments

– Course communication
• Message board (announcements and technical discussion)

• Email (administrative issues)

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 12

Getting Started

• Obtain an account on the EECS Linux server
– Your working account in EECS

– Activation online via EECS web server:
https://newport.eecs.uci.edu/account.py

• Log into the server
– Use a terminal with SSH protocol (secure shell, port 22)
– Connect to the EECS Linux server

• ladera.eecs.uci.edu

– Authorize yourself with user name and password

• Work in the Linux system environment
– Shell prints command prompt, awaiting input
– Type in system commands
echo, date, ls, cat, man, more,
pwd, mkdir, cd, cp, mv, rm, rmdir, …

– Refer to manual pages for help on commands

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 7

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 13

Linux System Environment

• Linux shell commands
– echo print a message
– date print the current date and time
– ls list the contents of the current directory
– cat list the contents of files
– more list the contents of files page by page
– pwd print the path to the current working directory
– mkdir create a new directory
– cd change the current directory
– cp copy a file
– mv rename and/or move a file
– rm remove (delete) a file
– rmdir remove (delete) a directory
– man view manual pages for system commands

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 14

Linux System Environment

• Text editing
– vi standard Unix editor

– vim vi-improved (supports syntax highlighting)

– pico easy-to-use text editor

– emacs very powerful editor

– many others...

• Pick one editor and
make yourself comfortable with it!

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 8

• Categories of programming languages
– Machine languages (stream of 1’s and 0’s)

– Assembly languages (low-level CPU instructions)

– High-level languages (high-level instructions)

• Translation of high-level languages
– Interpreter (translation for each instruction)

– Compiler (translation once for entire unit)

– Hybrid (combination of the above)

• Types of programming languages
– Functional (e.g. Lisp)

– Structured (e.g. Pascal, C, Ada)

– Object-oriented (e.g. C++, Java, Python)

– High-level languages (high-level instructions)

– Compiler (translation once for entire unit)

– Structured (e.g. Pascal, C

–

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 15

Review of C Programming

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 16

History of C

• Evolved from BCPL and B
– in the 60’s and 70’s

• Created in 1972 by Dennis Ritchie (Bell Labs)
– first implementation on DEC PDP-11

– added concept of typing (and other features)

– development language of UNIX operating system

• “Traditional” C
– 1978, “The C Programming Language”,

by Brian W. Kernighan, Dennis M. Ritchie

– ported to most platforms

• ANSI C
– standardized in 1989 by ANSI and OSI

– standard updated in 1999

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 9

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 17

The C Programming Language

• What is C?
– Programming language

• high-level
• structured
• compiled

– Standard library
• rich collection of existing functions

• Why C?
– de-facto standard in software development
– code is portable to many different platforms
– supports structured and functional programming
– easy transition to object-oriented programming

• C++ / Java

– freely available for most platforms

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 18

The first C Program

• Program example: HelloWorld.c
/* HelloWorld.c: our first C program */
/* */
/* author: Rainer Doemer */
/* */
/* modifications: */
/* 09/28/04 RD initial version */

#include <stdio.h>

/* main function */

int main(void)
{

printf("Hello World!\n");
return 0;

}

/* EOF */

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 10

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 19

The first C Program

• Program comments
– start with /* and end with */

– are ignored by the compiler

– should be used to
• document the program code

• structure the program code

• enhance the readability

• #include preprocessor directive
– inserts a header file into the code

• standard header file <stdio.h>
– part of the C standard library

– contains declarations of standard types and functions
for data input and output (e.g. function printf())

/* HelloWorld.c: our first C program */
/* author: Rainer Doemer */
/* modifications: */
/* 09/28/04 RD initial version */

#include <stdio.h>

/* main function */

int main(void)
{

printf("Hello World!\n");
return 0;

}

/* EOF */

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 20

The first C Program

• int main(void)
– main function of the C program
– the program execution starts (and ends) here
– main must return an integer (int) value to the operating

system at the end of its execution
• return value of 0 indicates successful completion
• return value greater than 0 usually indicates an error condition

• function body
– block of code

(definitions and statements)
– starts with an opening brace ({)
– ends with a closing brace (})

• printf() function
– formatted output (to stdout)

• return statement
– ends a function and returns its argument as result

...

/* main function */

int main(void)
{

printf("Hello World!\n");
return 0;

}

/* EOF */

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 11

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 21

The first C Program

• Program compilation
– compiler translates the code into an executable program
– gcc HelloWorld.c

– compiler reads file HelloWorld.c and creates file a.out

– options may be specified to direct the compilation
• -o HelloWorld specifies output file name

• –ansi –Wall specifies ANSI code with all warnings

• Program execution
– use the generated executable as command
– HelloWorld

– the operating system loads the program (loader),
then executes its instructions (program execution),
and finally resumes when the program has terminated

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 22

The first C Program

• Example session: HelloWorld.c
login as: doemer
doemer@ladera.eecs.uci.edu's password:
Last login: Tue Sep 20 16:26:18 2011 from beta.eecs.uci.edu
doemer@ladera.eecs.uci.edu:1 > cd eecs22/lecture1/
doemer@ladera.eecs.uci.edu:2 > vi HelloWorld.c
doemer@ladera.eecs.uci.edu:3 > ls
Addition.c HelloWorld.c
doemer@ladera.eecs.uci.edu:4 > ls -l
total 2
-r-------- 1 doemer named 702 Oct 26 2009 Addition.c
-r-------- 1 doemer named 263 Oct 26 2009 HelloWorld.c
doemer@ladera.eecs.uci.edu:5 > gcc HelloWorld.c
doemer@ladera.eecs.uci.edu:6 > ls
Addition.c a.out* HelloWorld.c
doemer@ladera.eecs.uci.edu:7 > a.out
Hello World!
doemer@ladera.eecs.uci.edu:8 > gcc -Wall -ansi HelloWorld.c -o
HelloWorld
doemer@ladera.eecs.uci.edu:9 > HelloWorld
Hello World!
doemer@ladera.eecs.uci.edu:10 > exit

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 12

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 23

General Program Structure

• Initialization section
– Definition of variables (storage elements)

• Name, type, and initial value

• Input section
– read values from input devices into variables

• standard input functions

• Computation section
– perform the necessary computation on variables

• assignment statements

• Output section
– write results from variables to output devices

• standard output functions

• Exit section
– clean up and exit

Start

Input

Compute

Output

Finish

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 24

General Program Structure

• Program example: Addition.c (part 1/2)
/* Addition.c: adding two integer numbers */
/* */
/* author: Rainer Doemer */
/* */
/* modifications: */
/* 09/30/04 RD initial version */

#include <stdio.h>

/* main function */

int main(void)
{

/* variable definitions */
int i1 = 0; /* first integer */
int i2 = 0; /* second integer */
int sum; /* result */

...

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 13

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 25

General Program Structure

• Program example: Addition.c (part 2/2)
...

/* input section */
printf("Please enter an integer: ");
scanf("%d", &i1);
printf("Please enter another integer: ");
scanf("%d", &i2);

/* computation section */
sum = i1 + i2;

/* output section */
printf("The sum of %d and %d is %d.\n", i1, i2, sum);

/* exit */
return 0;

} /* end of main */

/* EOF */

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 26

General Program Structure

• Variable definition and initialization

– Variable type: int
• integer type, stores whole numbers (e.g. -5, 0, 42)
• many other types exist (float, double, char, ...)

– Variable name: i1, i2, sum
• valid identifier, i.e. name composed of letters, digits
• variable name should be descriptive

– Initializer: = 0
• specifies the initial value of the variable
• optional (if omitted, initial value is undefined)

/* variable definitions */
int i1 = 0; /* first integer */
int i2 = 0; /* second integer */
int sum; /* result */

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 14

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 27

General Program Structure

• Data input using scanf() function

– part of standard I/O library
• declared in header file stdio.h

– reads data from the standard input stream stdin
• stdin usually means the keyboard

– converts input data according to format string
• “%d” indicates that a decimal integer value is expected

– stores result in specified location
• &i1 indicates to store at the address of variable i1

/* input section */
printf("Please enter an integer: ");
scanf("%d", &i1);

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 28

General Program Structure

• Computation using assignment statements

– Operator = specifies an assignment
• value of the right-hand side (i1 + i2)

is assigned to the left-hand side (sum)
• left-hand side is usually a variable
• right-hand side is a simple or complex expression

– Operator + specifies addition
• left and right arguments are added
• result is the sum of the two arguments

– Many other operators exist
• For example, -, *, /, %, <, >, ==, ^, &, |, ...

/* computation section */
sum = i1 + i2;

EECS22: Advanced C Programming Lecture 1

(c) 2011 R. Doemer 15

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 29

General Program Structure

• Data output using printf() function

– part of standard I/O library
• declared in header file stdio.h

– writes data to the standard output stream stdout
• stdout usually means the monitor

– converts output data according to format string
• standard text is copied verbatim to the output
• “%d” is replaced with a decimal integer value

– takes values from specified arguments
• i1 indicates to use the value of the variable i1

/* output section */
printf("The sum of %d and %d is %d.\n", i1, i2, sum);

EECS22: Advanced C Programming, Lecture 1 (c) 2011 R. Doemer 30

General Program Structure

• Example session: Addition.c
% vi Addition.c
% ls -l
-rw------- 1 doemer faculty 702 Sep 30 14:17 Addition.c
% gcc -Wall -ansi Addition.c -o Addition
% ls -l
-rwx------ 1 doemer faculty 6628 Sep 30 16:44 Addition*
-rw------- 1 doemer faculty 702 Sep 30 14:17 Addition.c
% Addition
Please enter an integer: 27
Please enter another integer: 15
The sum of 27 and 15 is 42.
% Addition
Please enter an integer: 123
Please enter another integer: -456
The sum of 123 and -456 is -333.
%

