
EECS22: Advanced C Programming Lecture 11

(c) 2011 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 11

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 2

Lecture 11: Overview

• Course Administration
– Midterm course evaluation: Results

– Midterm exam: Review and Discussion

• Data Structures
– Structures

– Type definitions

EECS22: Advanced C Programming Lecture 11

(c) 2011 R. Doemer 2

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 3

Course Administration

• Midterm Course Evaluation: Results
– Participation

• 12 out of 19 students (63.16%)

• Thank you!

– Specific Feedback
• Overall very positive

• Overlap and discrepancy to EECS 20

• Some interesting suggestions

– MidtermEvaluation_Report.pdf

– Discussion…

Course Administration

• Midterm Exam: Review and Discussion
– Overall satisfactory results

• Most show good understanding

• Some questions appear to be “harder”
– Q1, Q4, Q7, Q16, Q17, Q18

• “Free” programming appears to be a harder (new?) topic
– Contents of header files

– Makefile!

– MidtermExam_Solution.pdf

– Discussion…

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 4

EECS22: Advanced C Programming Lecture 11

(c) 2011 R. Doemer 3

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 5

Data Structures

• Basic Data Types
– Non-composite types with built-in operators

• Integral types

• Floating point types

• Static Data Structures
– Composite user-defined types with built-in operators

• Arrays

• Structures, unions, enumerators

• Dynamic Data Structures
– Composite user-defined types with user-defined operations

• Lists, queues, stacks

• Trees, graphs

• Dictionaries, etc.

 Pointers!

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 6

Data Structures

• Structures (aka. records): struct
– User-defined, composite data type

• Type is a composition of (different) sub-types

– Fixed set of members
• Names and types of members are fixed at structure definition

– Member access by name
• Member-access operator: structure_name.member_name

• Example:

struct S { int i; float f;} s1, s2;

s1.i = 42; /* access to members */
s1.f = 3.1415;
s2 = s1; /* assignment */
s1.i = s1.i + 2*s2.i;

EECS22: Advanced C Programming Lecture 11

(c) 2011 R. Doemer 4

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 7

Data Structures

• Structure Declaration
– Declaration of a user-defined data type

• Structure Definition
– Definition of structure members and their type

• Structure Instantiation and Initialization
– Definition of a variable of structure type
– Initializer list defines initial values of members

• Example:
struct Student; /* declaration */

struct Student /* definition */
{ int ID; /* members */

char Name[40];
char Grade;

};

struct Student Jane = /* instantiation */
{1001, “Jane Doe”, ‘A’}; /* initialization */

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 8

Data Structures

• Structure Access
– Members are accessed by their name
– Member-access operator .

• Example:
struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

void PrintStudent(struct Student s)
{

printf(“ID: %d\n”, s.ID);
printf(“Name: %s\n”, s.Name);
printf(“Grade: %c\n”, s.Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

EECS22: Advanced C Programming Lecture 11

(c) 2011 R. Doemer 5

EECS22: Advanced C Programming, Lecture 11 (c) 2011 R. Doemer 9

Data Structures

• Type definitions: typedef
– A type definition creates an alias type name for another type

– A type definition uses the same syntax as a variable definition
• Technically, typedef is a storage class!

– Type definitions are often used…
• as common type name used in several places in the code

• as shortcut for composite user-defined types (objects)

• Examples:
typedef unsigned long UInt64; /* 64-bit type */

typedef struct Student Scholar; /* shortcut */
Scholar Jane, John;

typedef struct Image /* PhotoLab image type */
{ unsigned int Width, Height;

unsigned char *R, *G, *B;
} IMAGE;

