
EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 1

EECS 22: Advanced C Programming

Lecture 13

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 2

Lecture 13: Overview

• Pointers
– Definition, initialization and assignment

– Pointer dereferencing

– Pointer arithmetic
• Increment, decrement

– Pointer comparison

– Pointers and Arrays
• Equivalence!

• Array layout in linear address space

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 2

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 3

Pointers

• Pointers are variables whose values are addresses
– The “address-of” operator (&) returns a pointer!

• Pointer Definition
– The unary * operator indicates a pointer type in a definition

• Pointer initialization or assignment
– A pointer may be set to the “address-of” another variable

– A pointer may be set to 0 (points to no object)

– A pointer may be set to NULL (points to “NULL” object)

int x = 42; /* regular integer variable */
int *p; /* pointer to an integer */

p = &x; /* p points to x */

p = 0; /* p points to no object */

#include <stdio.h> /* defines NULL as 0 */
p = NULL; /* p points to no object */

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 4

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

0

p

42

x

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 3

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 5

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42

p

42

x

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 6

Pointers

• Pointer Dereferencing
– The unary * operator dereferences a pointer

to the value it points to (“content-of” operator)
#include <stdio.h>

int x = 42; /* regular integer variable */
int *p = NULL; /* pointer to an integer */

p = &x; /* make p point to x */
printf(“x is %d, content of p is %d\n”, x, *p);
*p = 2 * *p; /* multiply content of p by 2 */
printf(“x is %d, content of p is %d\n”, x, *p);

x is 42, content of p is 42
x is 84, content of p is 84

p

84

x

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 4

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 7

Pointers

• Pointer Dereferencing
– The -> operator dereferences a pointer to a structure

to the content of a structure member

struct Student
{ int ID;

char Name[40];
char Grade;

};

struct Student Jane =
{1001, “Jane Doe”, ‘A’};

struct Student *p = &Jane;

void PrintStudent(void)
{

printf(“ID: %d\n”, p->ID);
printf(“Name: %s\n”, p->Name);
printf(“Grade: %c\n”, p->Grade);

}

1001
“Jane Doe”

‘A’

Jane

ID

Name

Grade

ID: 1001
Name: Jane Doe
Grade: A

p

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 8

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */

20,

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 5

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 9

20,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30,

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 10

20, 30,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20,

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 6

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 11

20, 30, 20,

Pointers

• Pointer Arithmetic
– Pointers pointing into arrays may be ...

• ... incremented to point to the next array element

• ... decremented to point to the previous array element

int x[5] = {10,20,30,40,50}; /* array of 5 integers */
int *p; /* pointer to integer */

p = &x[1]; /* point p to x[1] */
printf(“%d, ”, *p); /* print content of p */
p++; /* increment p by 1 */
printf(“%d, ”, *p); /* print content of p */
p--; /* decrement p by 1 */
printf(“%d, ”, *p); /* print content of p */
p += 2; /* increment p by 2 */
printf(“%d, ”, *p); /* print content of p */

20, 30, 20, 40,

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 12

Pointers

• Pointer Comparison
– Pointers may be compared for equality

• operators == and != are useful to determine identity

• operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */

if (p1 == p2)
{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

Contents of p1 and p2 are the same!

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 7

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 13

Pointers

• Pointer Comparison
– Pointers may be compared for equality

• operators == and != are useful to determine identity

• operators <, <=, >=, and > are not applicable

int x[5] = {10,20,10,20,10}; /* array of 5 integers */
int *p1, *p2; /* pointers to integer */

p1 = &x[1]; p2 = &x[3]; /* point to x[1], x[3] */
p1 += 2; /* increment p1 by 2 */
if (p1 == p2)

{ printf(“p1 and p2 are identical!\n”);
}

if (*p1 == *p2)
{ printf(“Contents of p1 and p2 are the same!\n”);
}

p1 and p2 are identical!
Contents of p1 and p2 are the same!

Pointers and Arrays

• In C, Pointers and Arrays are equivalent!
– A pointer represents an address in memory

– An array is represented by the address of its first element
in memory

• Passing Arrays and Pointers to Functions
– Arrays are passed by reference

– Pointers are references and passed as such

• Array Access is equivalent to Pointer Dereferencing
– Example:

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 14

int A[10];
...
A[0] = 42;
...
A[5] = 17;

int A[10], *p = &A[0];
...
*p = 42;
...
*(p+5) = 17;

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 8

Pointers and Arrays

• Dynamic Arrays
– Example 1:

Static 1-dim. array
• Static definition

• Passed as static array

• Static array access

Static size everywhere!

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 15

int Sum(int A[100])
{

int i, sum = 0;
for(i=0; i<100; i++)
{ sum += A[i];
}
return sum;

}

int main(void)
{

int d[100], s;
...
s = Sum(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 2:

Static 1-dim. array
• Static definition

• Passed as static array
plus size

Received as pointer!

Accessed via pointer!

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 16

int Sum(int *p, int m)
{

int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{

int d[100], s;
...
s = Sum(d, 100);
...
return 0;

}

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 9

Pointers and Arrays

• Dynamic Arrays
– Example 3:

Dynamic 1-dim. array
Dynamic allocation

Passed as pointer
plus size

Received as pointer!

Accessed via pointer!

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 17

int Sum(int *p, int m)
{

int i, sum = 0;
for(i=0; i<m; i++)
{ sum += *(p + i);
}
return sum;

}

int main(void)
{

int *d, s;
d = malloc(sizeof(int)*100);
if (!d)

{ exit(10); }
...
s = Sum(d, 100);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 4:

Static 2-dim. array
• Static definition

• Passed as static array

• Static array access

Static sizes everywhere!

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 18

int Sum(int A[5][20])
{

int i, j, sum = 0;
for(i=0; i<5; i++)

for(j=0; j<20; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{

int d[5][20], s;
...
s = Sum(d);
...
return 0;

}

EECS22: Advanced C Programming Lecture 13

(c) 2011 R. Doemer 10

Pointers and Arrays

• Dynamic Arrays
– Example 5:

Mixed 2-dim. array
• Static definition

of dimension 1 (columns)

• Dynamic allocation
of dimension 2 (rows)

Passed as array with
dynamic dimension 2
(number of rows)
and sizes

Static array access

Multi-dimensional arrays
are arrays of arrays…

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 19

int Sum(int A[][20], int m,int n)
{

int i, j, sum = 0;
for(i=0; i<m; i++)

for(j=0; j<n; j++)
{ sum += A[i][j];
}

return sum;
}

int main(void)
{

int (*d)[20], s;
d = malloc(sizeof(int[20])*5);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}

Pointers and Arrays

• Dynamic Arrays
– Example 6:

Dynamic 2-dim. array
Dynamic allocation

of all dimensions

Passed as pointer

Received as pointer!

Accessed via pointer!

Any array…
Of any dimension

Of any size

…can be mapped into
linear address space!

EECS22: Advanced C Programming, Lecture 13 (c) 2011 R. Doemer 20

int Sum(int *p, int m, int n)
{

int i, j, sum = 0;
for(i=0; i<m; i++)

for(j=0; j<n; j++)
{ sum += *(p + i*n + j);
}

return sum;
}

int main(void)
{

int *d, s;
d = malloc(sizeof(int)*5*20);
if (!d)

{ exit(10); }
...
s = Sum(d, 5, 20);
free(d);
...
return 0;

}

