
EECS 22: Assignment 4

Prepared by: Weiwei Chen, Prof. Rainer Doemer

October 27, 2011

Due on Monday 11/14/2011 11:59pm. Note: this is a two-week assignment.

1 Digital Image Processing [100 points + 10 bonus points]
In this assignment you will learn how to use dynamic memory allocation in your program and how to link against
libraries. Based on the program PhotoLab for assignment3, you will be first asked to redesign your digital image
processing (DIP) operations to accommodate images with different sizes, and then add more DIP operations whose
results are images with different sizes from the original one. Thus you can use your PhotoLab program to perform the
DIP operations on any of your own pictures.

1.1 Introduction
In assignment3, you were asked to decompose your PhotoLab program into separate modules and compile them into
different programs. The user can load an image from a file, apply a set of DIP operations to the image, and save the
processed image in a file by using the PhotoLab; or they can using the Test program to perform all the DIP operations
automatically. This assignment will be an extension of assignment3.

1.2 Initial Setup
Before you start working on this assignment, please do the following steps:

1. Create the subdirectory hw4 for this assignment, and change your current directory to hw4.

2. We will modify and extend the PhotoLab program based on assignment3. Please feel free to reuse all your
source code (*.c) and header files (*.h) as the starting point for this assignment. You may reuse the solution files
to assignment3 which are published on our course website as well. Copy all the source code files (*.c) and the
header files (*.h) to hw4 except FileIO.h and FileIO.c

3. Copy the new header file for File I/O and the FileIO library file from the eecs22 account:

cp ˜eecs22/hw4/FileIO.h ./
cp ˜eecs22/hw4/Image.h ./
cp ˜eecs22/hw4/libfileio.a ./

Here,

• Image.h is the header file for the definition of the new structure and declarations of the pixel mapping
functions we will use in Section 1.3.2;

• FileIO.h is the new header file for File I/Os, i.e. ReadImage() and SaveImage().

• libfileio.a is the File I/O library.

4. Copy your Makefile to hw4.

1

We will still use the PPM image file sailing.ppm as the test file for this assignment. As before, once a DIP operation
is done, you can save the modified image as name.ppm, and it will be automatically converted to a JPEG image and
sent to the folder public html in your home directory. You will be able to see the images in any web browser at:
http://newport.eecs.uci.edu/∼youruserid, if required names are used. If you save images by other names, use the link
http://newport.eecs.uci.edu/∼youruserid/imagename.jpg to access the photo.

Note that whatever you put in the public html directory will be publicly accessible; make sure you don’t put files there
that you don’t want to share, i.e. do not put your source code into that directory.

NOTE: When you finish this assignment, your PhotoLab program will be able to manipulate any images (as long
as there is enough memory for the program and disk space for the output images). A digital camera usually takes
pictures and stores them in the format of JPEG. In order to use the PhotoLab program, you need to first convert your
JPEG picture (*.jpg, *.JPG, *.jpeg, *.JPEG) into the PPM (*.ppm) raw data format. You can use the following linux
command for the conversion:

jpegtopnm yourfilename.jpg > yourfilename.ppm

1.3 Add support for different image sizes
In this assignment, we will add support for DIP operations on images with different sizes. In the previous two assign-
ments, our programs define two constants WIDTH and HEIGHT as the fixed size of the input image. At that time,
our PhotoLab program can only manipulate images with the size of 640x425.

In order to add the support for different image size, we need to redefine size of the arrays that we are using to store
the color intensity information for each pixels. The size of the input image cannot be known at program compile
time. Thus, we cannot define arrays whose size cannot be determined at the program compile time. Therefore, we
need to use dynamic memory allocation to claim three blocks of memory whose size will be decided at the program
run time, and these memory spaces will then be used to store the color intensity values for each pixel of the input image.

Instead of defining three arrays and pass them as the arguments to the DIP operation functions, we will now use
pointers to point to an image structure and the memory space that will be dynamically allocated by our program at run
time.

1.3.1 Use pointers to one dimensional memory space instead of arrays with two dimensions

We need to use dynamic memory allocation since the size of the image will not be known until we run the program.
We will use three pointers to type unsigned char for the color intensity values for each pixel instead of three fixed
sized arrays. However, the pointers only points to the memory space that has only one dimension. Therefore, we need
to map the 2-tuple coordinates of the pixels to a single value to index the corresponding pixel color information from
the memory space pointed to by the pointers.

For example, we have an image of size 10x5, and three pixels (0, 0), (9, 4), and (6, 4). We assume row major for the
image storage in this program. Therefore, the index value for pixel (0, 0) in the one dimensional storage space will be
0; the index value for pixel (9, 4) in the one dimensional storage space will be 49 = 9+4∗10; and the index value for
pixel (6, 4) in the one dimensional storage space will be 46 = 6+4∗10.
In general, the index value for the pixel (x, y) in an image of size WIDTHxHEIGHT in the one dimensional storage
space will be x + y * WIDTH.

1.3.2 The Image.c module

Please add one module Image.c (Image.h see the provided one) to handle basic operations on the image.

• The IMAGE struct: We will use a struct type to aggregate all the information of one image. The following
struct is defined in Image.h:

2

typedef struct {
unsigned int Width; /* image width */
unsigned int Height; /* image height */
unsigned char *R; /* pointer to the memory storing all the R intensity values */
unsigned char *G; /* pointer to the memory storing all the G intensity values */
unsigned char *B; /* pointer to the memory storing all the B intensity values */
}IMAGE;

• Define the functions to get / set the value of the color intensities for each pixel in the image. Please use the
following function prototypes (provided in Image.h) and define the functions properly (in Image.c)

/*Get the color intensity of the Red channel of pixel (x, y) in image*/
unsigned char GetRPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Get the color intensity of the Green channel of pixel (x, y) in image*/
unsigned char GetGPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Get the color intensity of the Blue channel of pixel (x, y) in image*/
unsigned char GetBPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Set the color intensity of the Red channel of pixel (x, y) in image with value r*/
void SetRPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char r);

/*Set the color intensity of the Green channel of pixel (x, y) in image with value g*/
void SetGPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char g);

/*Set the color intensity of the Blue channel of pixel (x, y) in image with value b*/
void SetBPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char b);

The mapping from the 2-tuple coordinates (x, y) to the single index value for the one dimensional memory space
will be taken care of in this these functions. Please use these functions in your DIP functions for setting / getting
the intensity values of the images.

• Please add assertions in these functions to make sure the input image point is valid, and the set of pointers to
the memory spaces for the color intensity values are valid too.

• Please extend the Makefile accordingly: 1) the target to generate Image.o 2) add Image.o when generating
PhotoLab and Test.

1.3.3 Read and save image files

You may refer to FileIO.h for the defined functions for file I/Os.

• int GetImageSize(const char *fname, unsigned int *Width, unsigned int *Height): opens the image file
with name fname.ppm, and sets the value of the Width and Height with the value of the width and height of the
image respectively.

• ReadImage(const char *fname, IMAGE *image): reads the file with name fname.ppm, and stores the color
intensities for channel red, green, and blue into the memory spaces pointed by member pointers R, G and B of
image respectively.

• SaveImage(const char *fname, IMAGE *image): saves the color intensities for channel red, green, and blue
stored in the memory spaces pointed by member pointers R, G and B of image into the file with name fname.ppm.

For ReadImage() function, you need to claim the memory spaces to the member pointers R, G and B before you call
this function to get the content of the input image file. At the end of your program, you need to free these memory
spaces to avoid memory leakage.

3

Please write two functions to handle the memory allocations and releases in Image.c (Functions declared in Image.h).
Please use the following function prototypes.

/* allocate the memory spaces for the image */
/* and the memory spaces for the color intensity values. */
/* return the pointer to the image */
IMAGE *CreateImage(unsigned int Width, unsigned int Height);

/*release the memory spaces for the pixel color intensity values */
/*release the memory spaces for the image */
void DeleteImage(IMAGE *image);

1.3.4 Modify function prototypes and definitions

All of our functions need to be redefined by taking the IMAGE structure as the parameter which contains all the
information about the image.

Your DIP function prototypes may look like below:

• In DIPs.h:

/* change color image to black & white */
void BlackNWhite(IMAGE *image);

/* reverse image color */
void Negative(IMAGE *image);

/* flip image horizontally */
void HFlip(IMAGE *image);

/* mirror image horizontally */
void HMirror(IMAGE *image);

/* flip image vertically */
void VFlip(IMAGE *image);

/* mirror image vertically */
void VMirror(IMAGE *image);

• In Advanced.h:

/* aging the image */
void Aging(IMAGE *image);

/* blur the image */
void Blur(IMAGE *image);

/* detect the edge of the image */
void EdgeDetection(double K, IMAGE *image);

/* Test all functions */
void AutoTest(const char *fname);

NOTE: By using pointers to one dimensional memory space, you need to modify the statements in your functions for
array elements’ indexing with the pixel setting / getting functions accordingly. For example:

4

• In assignment3, we get the pixel’s color value by indexing the element from the two-dimensional array:
tmpR = R[x][y];

• Now, we get the pixel’s color value by calling the getting function:
tmpR = GetRPixel(image, x, y);

• In assignment3, we set the pixel’s color value by indexing the element from the two-dimensional array:
R[x][y] = ...;

• Now, we set the pixel’s color value by calling the setting function:
SetRPixel(image, x, y, ...);

By using the setting / getting functions, we can keep the two-dimensional coordinate system as assignment2 and as-
signment3.

Please make sure to include the translation unit Image.h properly in your source code files and header files.

1.3.5 Remove the WaterMarkDecipher() function

We will no longer encrypt any messages in the input image. Please remove / comment out the WaterMarkDecipher()
function from your source code.

1.3.6 Modify the AutoTest() function

Please put the File I/O and memory allocations inside the AutoTest() function. The only parameter this function will
take is the name of the image file that will be used for testing. Please refer to Section 1.5 for more implementation
details.

1.3.7 Modify the Makefile to link against the library

We will use the provided library for File I/Os in this assignment. Please adjust your Makefile accordingly so as not to
compile the object file of FileIO.o, but use the provided libfileio.a in stead.

Your own Makefile should have at least the following targets:

• all: the target to generate all the executable programs.

• clean: the target to clean all the intermedia files, e.g. object files, the executable programs, and the generated
ppm files.

• *.o: the target to generate the object file *.o from the C source code file *.c. FileIO.o is no longer needed.

• PhotoLab: the target to generate the executable program PhotoLab.

• Test: the target to generate the executable program Test which only calls the AutoTest() function.

Compile your source code into PhotoLab and Test by using your Makefile:

make all

HINT: There are two ways to link against a library (.a) file:

1. use it as a normal object file with full name.

2. use the -l option of gcc to specify which library to use (e.g. -lfileio means using the library libfileio.a), and the
-L option of gcc to specify the directory of the library.

5

(a) Original image (b) Rotated image

Figure 1: An image and its rotatedd counterpart.

1.4 Advanced DIP operations
In this assignment, please implement the advanced DIP operations described below in Advanced.c (Advanced.h as
the header file).

Please reuse the menu you designed for assignment3 and extend it with the advanced operations. The user should be
able to select DIP operations from a menu as the one shown below:

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Flip an image vertically
8: Mirror an image vertically
9: Age the image

10: Blur an image
11: Detect edges
12: Rotate 90 degrees clockwise
13: Resize the image
14: Overlay an image
15: Test all functions
16: Exit

Note: option ‘14: Overlay an image’ is a bonus question (10pts). If you decide to skip this option, you still need to
implement the option ‘15: Test all functions’.

6

(a) Coordinates for the original image (b) Coordinates for the rotated image

Figure 2: An image and its rotatedd counterpart.

1.4.1 Rotate-90-degree

This function rotates the image by 90 degrees clockwise. The size of the image will be the same, but the width (height)
of the new image will be the same as its original height (width).

NOTE: As shown in Fig. 2, for pixel indices, the row increases downward, while the column increases to the right.
Pixel indices are integer values, and range from 1 to the length of the row or column. The top left pixel’s coordinate is
(0, 0), and the bottom right pixel’s coordinate is (image→Width - 1, image→Height - 1).

You need to first find the coordinates’ mapping of the pixels from the original image (x, y) to the rotated image (x′,
y′). Then, set the color of the pixel at (x′, y′) in the new image to be the same as the color of the pixel at (x, y) in the
original image.

You need to define and implement the following function to do this DIP.

/*Rotate 90 degrees clockwise*/
IMAGE *Rotate(IMAGE *image);

NOTE: The Resize() function will either consume the input image and return a new image with the rotated size, or do
in place modifications on the input image and return itself then.

Figure 1 shows an example of this operation. Once the user chooses this option, your program’s output should like
this:

Please make your choice: 12
"Rotate 90 degree clockwise" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally

7

(a) Original image (b) resized to a bigger image (percent-
age = 150)

(c) resized to a smaller im-
age (percentage = 80)

Figure 3: An image and its resized bigger and resized smaller counterparts.

6: Mirror an image horizontally
7: Flip an image vertically
8: Mirror an image vertically
9: Age the image

10: Blur an image
11: Detect edges
12: Rotate 90 degrees clockwise
13: Resize the image
14: Overlay an image
15: Test all functions
16: Exit
Please make your choice:

Save the image with name ’rotate’ after this step.

1.4.2 Resize

This function resized the image with the scale of percentage.

• percentage == 100, the size of the new image is the same as the original one.

• percentage < 100, the size of the new image is smaller than the original one.

• percentage > 100, the size of the new image is bigger than the original one.

More specifically, with the scale of percentage,

• Widthnew = Widthold * (percentage / 100.00);

• Heightnew = Heightold * (percentage / 100.00);

If percentage is greater than 100, we need to duplicate some pixels from the original image to the new bigger one. (x′,
y′) is the position coordinates for the pixel in the new image, (x, y) is the coordinates of the pixel in the original image.
Copy the color of the pixel(x, y) in the original image, to pixel (x′, y′) in the new image, and in this case:

x = x’ / (percentage / 100.00);
y = y’ / (percentage / 100.00);

If percentage is smaller than 100, we will have fewer pixels in the new smaller image than in the original image. In
order not to lose too much information from the original image, we get the average value of the color intensities of
multiple pixels in the original image and use this average value as the color intensity of one pixel in the smaller image.

More specifically, as shown in Figure 4, each grid representing one pixel in the image, we will get the average value
for the color intensities of all the red edged pixels in the original image (from (x1, y1) to (x2−1, y2−1)), and use this
average value as the color intensity of the pixel (x, y) in the new image, where:

8

Figure 4: Pixels mapping from the bigger original image to the smaller new image

x1 = x / (percentage / 100.00);
y1 = y / (percentage / 100.00);
x2 = (x + 1) / (percentage / 100.00);
y2 = (y + 1) / (percentage / 100.00);

You need to define and implement the following function to do this DIP.

/*Resize*/
IMAGE *Resize(unsigned int percentage, IMAGE *image);

NOTE: The Resize() function will consume the input image and return a new image with the new size. Please delete
and create the images properly in this function.

Figure 3 shows an example of this operation. Once the user chooses this option, your program’s output should like
this:

Please make your choice: 13
Please input the resizing percentage (integer between 1˜500): 150
"Resizing the image" operation is done!

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Flip an image vertically
8: Mirror an image vertically
9: Age the image

10: Blur an image
11: Detect edges
12: Rotate 90 degrees clockwise
13: Resize the image
14: Overlay an image
15: Test all functions
16: Exit
Please make your choice:

Save the two images for this operation:

1. ’resizeb’: a bigger image with scale percentage = 150.

2. ’resizes’: a smaller image with scale percentage = 80.

9

(a) A second image (b) Overlay two image at position (150, 335)

Figure 5: A image and the overlayed image.

1.4.3 Image Overlay (bonus: 10 pts)

This function overlies the current image with a second image. In our program, we will put an image of rowing anteaters
on the original image.

To start the implementation, you need to prompt the user to enter the file name of the second image first, and then you
read that image in the beginning of the overlay function (define the second IMAGE image2, and use CreateImage()
and ReadImage() for loading). In this assignment, the second image is rowing.ppm(466x74 pixels). Since the image
is much smaller than the original one, the user also need to enter the position of overlay with coordinates (x, y).

Take a look at the second image at Figure 5. Note that it has a white background and the blue water part which are in-
consistent with our original image. To achieve the overlay effect, we will treat the background and the blue part in the
second image as transparent color. That is, each of the non-background/non-blue pixels in rowing.ppm will be overlaid
to a position in the original image, whereas background/blue pixels will stay as in the original image. Whether or not
a pixel in rowing.ppm is a background/blue pixel can be decided by the RGB values of this pixel. More specifically, if
a pixel has RGB value of (255, 255 ,255) which represents white backgroup, or (102, 153, 204) which represents the
blue water part, this pixel should not be put onto original image.

You need to define and implement the following function to do this DIP.

/*Overaly a small image onto the original big image*/
void Overlay(const char *f2name,IMAGE *image,

unsigned int x_offset, unsigned int y_offset);

Use the following command to get the rowing.ppm file.

cp ˜eecs22/hw4/rowing.ppm ./

Once user chooses this option, your program’s output should be like:

Please make your choice: 14
Please input the file name for the second image: rowing
Please input x coordinate of the overlay image: 150
Please input y coordinate of the overlay image: 335
rowing.ppm was read successfully!
"Image Overlay" operation is done!

10

1: Load a PPM image
2: Save an image in PPM and JPEG format
3: Change a color image to black and white
4: Make a negative of an image
5: Flip an image horizontally
6: Mirror an image horizontally
7: Flip an image vertically
8: Mirror an image vertically
9: Age the image

10: Blur an image
11: Detect edges
12: Rotate 90 degrees clockwise
13: Resize the image
14: Overlay an image
15: Test all functions
16: Exit
Please make your choice:

The effect can be seen in Figure 5 when position is chosen as (150, 335):

1.5 Test all functions
Finally, you are going to complete the AutoTest() function to test all previous functions as in assignment3. In this
function, you are going to call DIP functions one by one and observe the results. The function is for the designer to
quickly test the program, so you should supply all necessary parameters when testing. We will change the function
signature for AutoTest() so that the creation and deletion of the image will be taken care of inside this function.

The function should look like:

/* auto test*/
void
AutoTest(const char *fname)
{

IMAGE *image;
unsigned int W, H;
GetImageSize(fname, &W, &H);
image = CreateImage(W, H);

ReadImage(fname, image);
BlackNWhite(image);
SaveImage("bw", image);
printf("Black & White tested!\n\n");

...

ReadImage(fname, image);
Rotate(image);
SaveImage("rotate", image);
printf("Rotate 90 degrees clockwise tested!\n\n");
DeleteImage(image);

GetImageSize(fname, &W, &H);
image = CreateImage(W, H);

11

ReadImage(fname, image);
image = Resize(150, image);
SaveImage("resizeb", image);
printf("Resizing big in tested!\n\n");
DeleteImage(image);

GetImageSize(fname, &W, &H);
image = CreateImage(W, H);
ReadImage(fname, image);
image = Resize(80, image);
SaveImage("resizes", image);
printf("Resizing small out tested!\n\n");
DeleteImage(image);

GetImageSize(fname, &W, &H);
image = CreateImage(W, H);
ReadImage(fname, image);
Overlay("rowing", image, 150, 335);
SaveImage("overlay", image);
printf("Overlay tested!\n\n");
DeleteImage(image);
image = NULL;

}

Please hard-coded ”sailing” as the function argument when AutoTest() is called in PhotoLab. Please allow the user to
input the file name to be tested when AutoTest() is called in Test.

Once user chooses this option, your program’s output should be like:

Please make your choice: 15
sailing.ppm was read successfully!
bw.ppm was saved successfully.
bw.jpg was stored for viewing.
Black & White tested!

...

sailing.ppm was read successfully!
rotate.ppm was saved successfully.
rotate.jpg was stored for viewing.
Rotate 90 degrees clockwise tested!

sailing.ppm was read successfully!
resizeb.ppm was saved successfully.
resizeb.jpg was stored for viewing.
Resizing big in tested!

sailing.ppm was read successfully!
resizes.ppm was saved successfully.
resizes.jpg was stored for viewing.
Resizing small out tested!

sailing.ppm was read successfully!
rowing.ppm was read successfully!
overlay.ppm was saved successfully.

12

overlay.jpg was stored for viewing.
Overlay tested!

1.6 Extend the Makefile
For the Makefile, please

• extend it properly with the targets for your program with the new module: Image.c.

• generate two executable programs

1. PhotoLab with the user interactive menu.

2. Test without the user menu, but just call the AutoTest() function for testing. The needed file Test.c will be
very simple (only the main() function, getting the test file name from the user, and calling AutoTest()).

Define two targets to generate these two programs respectively. There’s no need to worry about the ”DEBUG”
mode for this assignment. You may either take those statements for supporting the ”DEBUG” mode out of your
source code, or just compile your object files with the ”-DDEBUG” option.

1.7 Use the ”valgrind” tool to Find Memory Leaks and Invalid Memory Use
Valgrind is a multipurpose code profiling and memory debugging tool for Linux. It allows you to run your program
in Valgrind’s own environment that monitors memory usage such as calls to malloc and free. If you use uninitial-
ized memory, write off the end of an array, or forget to free a pointer, Valgrind can detect it. You may refer to
http://valgrind.org/ for more details about the Valgrind tool.

In this assignment, please use the follow command to check the correctness of your memory usages:

valgrind --leak-check=full programname

If there’s no problem with the memory usage in your program, you will see some information similar as below when
finishing executing your program:

==xxxxx==
==xxxxx== HEAP SUMMARY:
==xxxxx== in use at exit: 0 bytes in 0 blocks
==xxxxx== total heap usage: 117 allocs, 117 frees, 8,191,477 bytes allocated
==xxxxx==
==xxxxx== All heap blocks were freed -- no leaks are possible
==xxxxx==
==xxxxx== For counts of detected and suppressed errors, rerun with: -v
==xxxxx== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 4 from 4)

You need to turn on the ”-g” option while compiling your program by gcc so as to get more detailed information if
there’s any memory usage problem with your program.
If there are some problems with the memory usage in your program, Valgrind will provide you the information about
where to fix in your program.

2 Implementation Details

2.1 Function Prototypes
For this assignment, you need to define the following functions in Advanced.h:

13

http://valgrind.org/

/*** function declarations ***/

/*Rotate 90 degrees clockwise*/
IMAGE *Rotate(IMAGE *image);

/*Resize*/
IMAGE *Resize(unsigned int percentage, IMAGE *image);

/*Overaly a small image onto the original big image*/
void Overlay(const char *f2name,IMAGE *image,
unsigned int x_offset, unsigned int y_offset);

/* Test all functions */
void AutoTest(const char *fname);

The following functions in Image.h:

/*** function declarations ***/

/*Get the color intensity of the Red channel of pixel (x, y) in image */
unsigned char GetRPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Get the color intensity of the Green channel of pixel (x, y) in image */
unsigned char GetGPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Get the color intensity of the Blue channel of pixel (x, y) in image */
unsigned char GetBPixel(IMAGE *image, unsigned int x, unsigned int y);

/*Set the color intensity of the Red channel of pixel (x, y) in image with value r*/
void SetRPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char r);

/*Set the color intensity of the Green channel of pixel (x, y) in image with value g */
void SetGPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char g);

/*Set the color intensity of the Blue channel of pixel (x, y) in image with value b */
void SetBPixel(IMAGE *image, unsigned int x, unsigned int y, unsigned char b);

/*allocate the memory spaces for the image*/
IMAGE *CreateImage(unsigned int Width, unsigned int Height);

/*release the memory spaces for the image*/
void DeleteImage(IMAGE *image);

You may want to define other functions as needed.

2.2 Pass in the pointer of the struct IMAGE
In the main function, define the struct variable image of type IMAGE. It will be used as the aggregation of the image
information: Width, Height, pointers to the memory spaces for all the color intensity values of the R, G, B channels.
When any of the DIP operations is called in the main function, the address of this image variable is passed into the
DIP functions so that the content of this variable can be accessed and modified in the DIP functions.
In your DIP function implementation, there are two ways to save the target image information. Both options work and
you should decide which option is better based on the specific DIP manipulation function at hand.

14

Option 1: using local variables You can define local variables of type IMAGE to save the target image information.
For example:

void DIP_function_name(IMAGE *image)
{

IMAGE *image_tmp;

image_tmp = CreateImage(image->Width, image->Height);

...

DeleteImage(image_tmp);
image_tmp = NULL;

}

Make sure you will create and delete the image space properly.
Then, at the end of each DIP function implementation, you should copy the data in image tmp over to image.

Option 2: in place manipulation Sometimes you do not have to create new local array variables to save the target
image information. Instead, you can just manipulate on image.R, image.G, image.B directly. For example, in the
implementation of Negative() function, you can assign the result of 255 minus each pixel value directly back to this
pixel entry.

NOTE: Please call SetRPixel (SetGPixel, SetBPixel) function for pixel color value setting, and GetRPixel (GetGPixel,
GetBPixel) function for pixel color value achieving.

3 Budgeting your time
You have two weeks to complete this assignment, but we encourage you to get started early as there are more work
than assignment2. We suggest you budget your time as follows:

• Week 1:

1. Design the Image.c (Image.h as the header file) module.

2. Change the signature and definitions of the existing functions.

3. Modify the AutoTest() function.

4. Adjust the Makefile with the targets for the new module, and compile programs by linking against the
libfileio.a library.

5. Implement one DIP function if possible.

• Week 2:

1. Implement all the advanced DIP functions.

2. Complete the AutoTest() function.

3. Use Valgrind to check memory usages. Fix the code if Valgrind complains about any errors.

4. Script the result of your programs and submit your work.

4 Script File
To demonstrate that your program works correctly, perform the following steps and submit the log as your script file:

1. Start the script by typing the command: script.

15

2. Compile and run PhotoLab by using your Makefile.

3. Choose ’Test all functions’ (The file names must be ’bw’, ..., ’rotate’, ’resizeb’, ’resizes’, ’overlay’ for the
corresponding function).

4. Exit the program.

5. Compile Test by using your Makefile.

6. Run Test under the monitor of Valgrind.

7. Clean all the object files, generated .ppm files and executable programs by using your Makefile.

8. Stop the script by typing the command: exit.

9. Rename the script file to PhotoLab.script.

NOTE: make sure use exactly the same names as shown in the above steps when saving modified images! The script
file is important, and will be checked in grading; you must follow the above steps to create the script file. Please don’t
open any text editor while scripting !!!

5 Submission
Use the standard submission procedure to submit the following files as the whole package of your program:

• PhotoLab.c

• PhotoLab.script

• Image.c

• Image.h

• Constants.h

• DIPs.c

• DIPs.h

• Advanced.c

• Advanced.h

• Test.c

• Makefile

Please leave the images generated by your program in your public html directory. Don’t delete them as we may
consider them when grading! You don’t have to submit any images.

16

	Digital Image Processing [100 points + 10 bonus points]
	Introduction
	 Initial Setup
	Add support for different image sizes
	Use pointers to one dimensional memory space instead of arrays with two dimensions
	The Image.c module
	Read and save image files
	Modify function prototypes and definitions
	Remove the WaterMarkDecipher() function
	Modify the AutoTest() function
	Modify the Makefile to link against the library

	Advanced DIP operations
	 Rotate-90-degree
	 Resize
	 Image Overlay (bonus: 10 pts)

	Test all functions
	Extend the Makefile
	Use the "valgrind" tool to Find Memory Leaks and Invalid Memory Use

	 Implementation Details
	 Function Prototypes
	 Pass in the pointer of the struct IMAGE

	Budgeting your time
	 Script File
	Submission

