
EECS 211 
Advanced System Software 

Winter 2011 
 

Assignment 3 
 
Posted: February 11, 2011 
Due: February 23, 2011 
 
Topic: Priority scheduling in Nachos 
 
Instructions: 
 
The goal of this assignment is to develop, implement and test task scheduling in 
the Nachos system. This assignment continues the previous assignments based 
on the “Nachos Assignment 1” described in the file doc/thread.ps of the 
Nachos installation. Again, the instructions below assume that you read 
doc/thread.ps in parallel. 
 
 
Task 1: Implement a priority-based scheduler 
 
See item 8 in doc/thread.ps. 
Again, we will work in the threads directory. As you have noticed in the 
previous assignments, the original Nachos scheduler implements a straight-
forward first-come-first-served (FCFS) scheduling policy. We will change that 
now into a priority-based policy. That is, with each thread, we will associate a 
priority between 0 and 9, 0 being the highest priority (first choice). 
 
In order to implement the priority scheduler, you will need to modify the Nachos 
source code only in the files thread.cc, thread.h, and scheduler.cc. 
 
Hints: Add an integer value for the priority to the Thread class which gets 
initialized when a Thread object is created. Then, change the order of the threads 
in the scheduler ready queue according to the thread priority. You will see, there 
is not much new code to write! 
 
 
Task 2: Add synchronization to a bounded buffer template for safe inter-
thread communication 
 
See item 2 in doc/threads.ps. 
For safe synchronization in the bounded buffer, use the locks and condition 
variables implemented in Assignment 2 (don’t use semaphores!). Note that the 
bounded buffer described in chapter 6.6.1 in the textbook is implemented using 
semaphores, so that is not a solution to this assignment. 



To start, you may use the following template file: 
/users/faculty/doemer/eecs211/threadtest.cc.W11templateA3 
Copy this file into your threads directory as file threadtest.cc. 
 
At the beginning of the template file, you find a bounded buffer implemented as a 
new class Buffer. The buffer size (maximum queue length) is set at the time of 
instantiation (as a parameter to the constructor). The class Buffer provides two 
public methods named Load and Store which take a single character (type 
char) out of the buffer, or place a character into the buffer, respectively (for 
details, see the provided template file threadtest.cc). 
 
You will need to add statements to properly synchronize the Load and Store 
methods using locks and condition variables (only!). Your added locks and 
condition variables should be instantiated as members inside the Buffer class, 
and should be properly called by the necessary methods so that the user of the 
buffer does not need to worry about any synchronization. 
 
Test your buffer implementation using a producer-consumer example. In the 
provided template file threadtest.cc, 2 producer and 2 consumer threads are 
instantiated which communicate via one shared instance of the bounded buffer. 
Note that the priority of the threads is defined when the thread objects are 
constructed (priorities 4, 3, 2, and 1, i.e. from low to high). 
 
Hint: Don’t modify anything but the Buffer class and its implementation. There 
is no need to change any code for the consumer and producer threads. 
And again, there is not much new code to write. 
 
 
Deliverables: 
 

 Briefly explain your added synchronization (few sentences) in the body of 
your email. 

 Submit the modified source files thread.cc and thread.h as 
attachments. 

 Submit the modified scheduler.cc as attachment. 
 Submit the completed source file threadtest.cc as attachment. 
 Submit a log file log.txt as attachment that shows the producer and 

consumer actions. 
 



Submission instructions: 
 
To submit your homework, send an email with subject “EECS211 HW3” to the 
course instructor at doemer@uci.edu. Please put your text in the body of the 
email and supply the source files as attachments. 
 
To ensure proper credit, be sure to send your email before the 
 
Deadline: Wednesday, February 23, 2011, at 2pm (sharp!) 
 
 
-- 
Rainer Doemer (EH3217, x4-9007, doemer@uci.edu) 
 


