
 - 1 - 

EECS 211 
Advanced System Software 

Winter 2011 
 

Assignment 4 
 
Posted: February 24, 2011 
Due: March 2, 2011 at 2pm 
 
Topic: User programs in Nachos 
 
Instructions: 
 
The goal of this assignment is to implement a set of user programs that can 
execute on a Nachos kernel (and test it!). For simplicity, we will use only very 
simple user programs that make only a few basic system calls to the Nachos 
kernel. 
 
This assignment follows Task 1 of “Nachos Assignment 2” described in the file 
doc/userprog.ps of the Nachos installation. The instructions below assume 
that you read doc/userprog.ps in parallel. 
 
 
Preparation: Understand the given framework 
 
Go into the test directory. Run the provided user programs on the provided 
(incomplete) kernel in the userprog directory. For example, run the provided 
halt program (the only one that will work with the unmodified kernel) as follows: 
../userprog/nachos –x halt 
 
In order to allow you to create and run your own user programs, the instructor 
has prepared a working Nachos kernel that supports the basic system calls that 
we will use in this assignment. While in your test directory, you can copy this 
prepared Nachos kernel to your test directory as follows: 
cp ~doemer/eecs211/nachos.W11kernelA4 nachos 
You can then execute the provided (or your own) user programs with the 
prepared Nachos kernel, as follows: 
./nachos –x halt 
 
The prepared Nachos kernel contains extra debugging support messages that 
you can enable with the –d X option. For example, 
./nachos –d X –x halt 
will indicate that the shutdown was actually initiated by the user program. 
 
Note that you will only need to change files in the test directory for this 
assignment. All other files should be left unmodified! 



 - 2 - 

We will limit this assignment to use only very basic system calls. Specifically, 
your user programs should rely only on the following 7 system calls being 
supported in the kernel: 
 

(a) SC_Halt 
(b) SC_Exit 
(c) SC_Create 
(d) SC_Open 
(e) SC_Read 
(f) SC_Write 
(g) SC_Close 

 
For the file I/O system calls (c) through (g), input from the console (OpenFileId 
ConsoleInput, alias stdin), output to the console (OpenFileId 
ConsoleOutput, alias stdout), and input and output to up to two regular files 
(OpenFileId > 1) is supported. In total, we will limit every user program to a 
maximum of 5 open files per user program. 
 
Task: Implement and test 6 simple user programs 
 
We will create a set of simple Nachos user programs (as test cases for the kernel 
in the following Assignment 5) and run them (for now) on the prepared kernel. To 
get started, you may want to take a look at the few examples that are already 
provided in the test directory. 
 
Your own user programs should be the following: 
 

(a) Program HelloWorld.c: 
should print the famous string “Hello World!” to the console and then 
cleanly exit 

(b) Program Reverse.c: 
should let the user enter some text string on the console (e.g. “This is a 
test”) and then print the string backwards to the console (e.g. “tset a si 
sihT”) 

(c) Program ListFile.c: 
should ask the user for a file name and print the contents of that file to 
the console 
 

All these “good” test programs should run fine and exit cleanly. 
 
Since you will implement your own kernel in the following Assignment 5, we will 
also need negative test cases that check whether or not a kernel is “bullet-proof”. 
For this purpose, create and run the following “bad” examples: 
 

(d) Program MemError.c: 
attempts to store the word 42 into the invalid memory address 1 



 - 3 - 

(e) Program FileError.c: 
attempts to write data to a file that has already been closed 

(f) Program IOError.c: 
attempts to read a string from the standard output stream 

 
Obviously, all these “bad” test programs will hopefully be killed by the OS before 
they do any damage. 
 
 
Deliverables: 
 

a) Six test programs HelloWorld.c, Reverse.c, ListFile.c, 
MemError.c, FileError.c, and IOError.c 

 
b) Six log files HelloWorld.log, Reverse.log, ListFile.log, 

MemError.log, FileError.log, and IOError.log that show the 
running of your user programs 

 
c) A brief description (in the body of your email!) of your implementation 

 
 
Submission instructions: 
 
To submit your homework, send an email with subject “EECS211 HW4” to the 
course instructor at doemer@uci.edu. Please include the files listed above as 
attachments, and put your brief (!) description in the body of your email. 
 
To ensure proper credit, be sure to send your email before the deadline: 
March 2, 2011, 2pm (sharp!). 
 
-- 
Rainer Doemer (EH 3217, x4-9007, doemer@uci.edu) 


