
 - 1 -

EECS 211
Advanced System Software

Winter 2011

Assignment 5

Posted: February 25, 2011
Due: March 9, 2011 at 2pm

Topic: Exception handling and system calls in Nachos

Instructions:

The goal of this assignment is to develop, implement and test basic support for
user programs in the Nachos kernel. To keep things simple, we will focus only on
a basic subset of exceptions and system calls that need to be supported in this
assignment.

This assignment is a direct extension of the previous Assignment 4, and as such
also follows Task 1 of “Nachos Assignment 2” described in the file
doc/userprog.ps of the original Nachos package. Again, the instructions
below assume that you read doc/userprog.ps in parallel.

Preparation: Patch the given framework

For this assignment, we will work in the userprog directory. To make the task of
extending the given Nachos kernel easier, we will use a few files that the
instructor has prepared for this assignment. Copy these prepared files into your
Nachos installation, as follows:

cd userprog
cp ~doemer/eecs211/addrspace.h.W11patchedA5 ../userprog/addrspace.h
cp ~doemer/eecs211/addrspace.cc.W11patchedA5 ../userprog/addrspace.cc
cp ~doemer/eecs211/console.cc.W11patchedA5 ../machine/console.cc
cp ~doemer/eecs211/exception.cc.W11templateA5 ../userprog/exception.cc
gmake

The final compilation step should run through cleanly.

Next, run the generated nachos kernel with the user programs that were part of
the Nachos installation, as well as the ones that you developed in Assignment 4.
For example:
./nachos –x ../test/halt
and/or
./nachos –d X –x ../test/halt

 - 2 -

You will see that only the halt program runs successfully. All others will need
extension of the kernel.

Before you start coding, you may want to trace the execution path by using the
built-in debugging facilities. Run the program step by step using the debugger
gdb. Finally, read in detail through the given sources provided in the userprog
directory (as outlined in doc/userprog.ps). Make sure you understand what is
going on when the user program is compiled, is loaded, executes, issues a
system call, and dies.

To fully understand the user program execution on the emulated MIPS machine,
review also the sources in other directories (i.e. machine). However, note that
you will only need to change files in the userprog directory for this assignment,
in particular file exception.cc. All other files should be left unmodified!

If you are not sure about any issue, please make use of the course message
board for technical discussion!

Task 1: Implement exception handling and system calls for basic file I/O

See item 1 in doc/userprog.ps.
Modify and complete the code in file exception.cc to support the exception
types listed in ../machine/machine.h and the system calls listed in
syscall.h. To do this, you need to extend the switch statement in the
function ExceptionHandler()with one case for each exception type. Also,
the SyscallException is handled by a function called SystemCall() that
again contains another switch statement to handle each type of system call. All
the necessary code should go into the file exception.cc (please start from the
provided template file, see above!)

Note that, except for the SyscallException, most exceptions are fatal errors
for the user program at this time (in later assignments, we will change that). Thus,
the kernel should print a specific error message (for us to observe the error), then
clean up any resources of the running program, and finally terminate the user
program. While some situations may call for shutting down the machine
immediately, you will see that killing the user program will also exit the Nachos
execution (when no more processes/threads are available, the scheduler shuts
down the machine).

We will limit this assignment to support only the basic system calls for file I/O.
Specifically, your code should fully support the following 7 system calls:

(a) SC_Halt
(b) SC_Exit
(c) SC_Create

 - 3 -

(d) SC_Open
(e) SC_Read
(f) SC_Write
(g) SC_Close

For the file I/O system calls (c) through (g), you should support input from the
console (OpenFileId ConsoleInput, alias stdin), output to the console
(OpenFileId ConsoleOutput, alias stdout), and input and output to regular
files (OpenFileId > 1). We will assume a maximum of 5 open I/O streams per
user program, see below.

Implementation Hint 1:

For safe and easy console I/O (i.e. input from stdin and output to stdout), it is
necessary to use a synchronous console class. For your convenience, such a
class SynchConsole is provided to you in the files addrspace.h and
addrspace.cc. One instance of the synchronous console is automatically
allocated with the creation of an address space for a process. Thus, it is readily
present when any system calls need to use it.

Implementation Hint 2:

You will need to copy data from the kernel address space into user space, and
vice versa. For example, for the SC_Open system call, the kernel needs to read
a filename provided by the program in user land.
To implement this cleanly, we will use a set of dedicated memory copy functions
in the kernel. Appropriate function prototypes with the following signatures are
provided in the template file exception.cc:

void CopyToKernel(

int FromUserAddress,
int NumBytes,
void *ToKernelAddress);

void CopyToUser(
void *FromKernelAddress,
int NumBytes,
int ToUserAddress);

In addition, it is convenient to have copy functions that handle zero-terminated
strings, as follows:

void CopyStringToKernel(

int FromUserAddress,
char *ToKernelAddress);

void CopyStringToUser(
char *FromKernelAddress,

 - 4 -

int ToUserAddress);

To implement these functions, you can use the functions ReadMem() and
WriteMem() which are declared in machine.h and implemented in
translate.cc. Note that we will re-use these functions just for simplicity
(actually, this is considered "dirty" because this uses internal functions of the
machine simulation; see the comment above the function declaration in
machine.h; however, for our purposes right now, this is just fine!).

Implementation Hint 3:

To properly handle the file I/O system calls, you will need to maintain a set of
open files for each process. Class AddrSpace (implemented in files
addrspace.h and addrspace.cc) is a good place to keep this table because
each process is now assigned such a space (via the Thread->space pointer).

To keep things simple, we maintain for each process a fixed array of 5 entries for
open files. Please see the FileTable defined in files addrspace.h and
addrspace.cc for details. An initial function CloseAllFiles() is also
provided in file exception.cc.

The first three entries in the FileTable are reserved for ConsoleInput (index
0, alias stdin), ConsoleOutput (index 1, alias stdout), and error handling
(i.e. stdout, a future extension, not supported now). Make sure to check the
arguments passed to the system calls properly, and cleanly abort user programs
which attempt to write into unopened files or try to read from stdout, etc. Also,
make sure that your OS closes any files left open when the user program exits or
is aborted.

Implementation Hint 4:

Please note that in order to have a “bullet-proof” kernel, all possible “bad” things
a user program may do (e.g. raising unsupported exceptions or providing invalid
arguments to system calls), must not disturb any kernel data structures, nor any
other processes. Instead, a misbehaving application must be properly terminated
(killed!) and all its resources (i.e. open files) must be carefully cleaned up (i.e.
closed).

Make sure that your implementation takes care of this protection as much as
possible! As bare minimum, your implementation must safely handle the test
cases that we implemented in Assignment 4.

 - 5 -

Task 2: Validate your implementation using the test programs

To test your exception handling and the implemented system calls, use the set of
Nachos user programs implemented for Assignment 4 and run them on your
kernel:

(a) Program Print.c:
should print the famous string “Hello World!” to the console

(b) Program Reverse.c:
should let the user enter some text string (e.g. “This is a test”) and then
print it backwards (e.g. “tset a si sihT”)

(c) Program Show.c:
should ask the user for a file name and print the contents of that file to
the console

All these “good” test programs should run fine and exit cleanly.

You should also test if your kernel is “bullet-proof”. For this purpose, run the
“bad” examples:

(d) Program MemError.c:
attempts to store the word 42 into the invalid memory address 1

(e) Program FileError.c:
attempts to read data from an unopened file

(f) Program IOError.c:
attempts to write a string to the standard input stream

All these “bad” test programs should be properly killed by the OS before they do
any damage.

 - 6 -

Deliverables:

a) Extended source file exception.cc.

b) Six log files that show your test programs running on your kernel:

HelloWorld.c, Reverse.c, ListFile.c, MemError.c,
FileError.c, and IOError.c.

c) A description (in the body of your email!) that briefly outlines your

implementation, i.e. status, open issues, problems solved, and decisions
taken.

Submission instructions:

To submit your homework, send an email with subject “EECS211 HW5” to the
course instructor at doemer@uci.edu. Please include the files listed above as
attachments, and put your brief description in the body of your email.

To ensure proper credit, be sure to send your email before the deadline:
March 9, 2011, 2pm (sharp!).

--
Rainer Doemer (EH 3217, x4-9007, doemer@uci.edu)

