> Chapter 9: Virtual Memory

[
[]
[
[
m Page Replacement
m Allocation of Frames
® Thrashing
m Allocating Kernel Memory
m Other Considerations
® Operating-System Examples
A
(slide modified by R. Doemer, 02/03/11) . “Y‘
Operating System Concepts — 8" Edition 9.1 Silberschatz, Galvin and Gagne ©2009
=
&;r”"’mﬁ' :
rdl Virtual Memory

® When handling a page fault,
what happens if there is no free frame?

m Page replacement —
find some page in memory, that is not really in use, swap it out

e Algorithm needed to find victim page

e Performance — we want an algorithm
which will result in minimum number of page faults

® Thus, same page may be brought into memory several times

(slide modified by R. Doemer, 05/27/10) ... T
Operating System Concepts — 81" Edition 9.2 Silberschatz, Galvin and Gagne ©2009

Page Replacement

m Prevent over-allocation of memory
by modifying page-fault service routine to include page replacement

B Page replacement completes separation
between logical memory and physical memory —
large virtual memory can be provided on a smaller physical memory!

To replace a page, any modified contents need to be written to storage

Use modify (dirty) bit to reduce overhead of page transfers —
only modified pages are written to disk

_,../.‘ : i‘,‘ ‘\,
(slide modified by R. Doemer, 05/27/10) [%

28

Operating System Concepts — 8" Edition 9.3 Silberschatz, Galvin and Gagne ©2009

Page Replacement

Extended page fault service routine:
m Page fault, find the location of the desired page on disk

® Find a free frame:
- If there is a free frame,
use the free frame
- If there is no free frame,
use page replacement algorithm to select a victim frame
if modified/dirty, swap out the victim page

® Bring the desired page into the (new) free frame

m Update the page and frame tables

H Restart the instruction

et
(slide modified by R. Doemer, 05/27/10)
Operating System Concepts — 81" Edition 9.4 Silberschatz, Galvin and Gagne ©2009

Page Replacement

frame valid—invalid bit

swap out
change victim
0 |i to invalid ®page ’D
L /
@ f| victim 9

Update page \
page table table for @
new page swap
desired

page in
physical
memory
- : |
(slide modified by R. Doemer, 05/25/10) .. [.*
Operating System Concepts — 8" Edition 9.5 Silberschatz, Galvin and Gagne ©2009

=

o :
“%77 Page Replacement Algorithms

Many page replacement algorithms are possible
Want lowest page-fault rate

m Evaluate algorithm by running it
on a particular string of memory references (reference string) and
counting the number of page faults on that string

m In the following examples, the reference string is

1,2,3,4,1,2,51,2,3,4,5

- =N
i

(slide modified by R. Doemer, 05/27/10) . "j‘

Operating System Concepts — 81" Edition 9.6 Silberschatz, Galvin and Gagne ©2009

“$77 First-In-First-Out (FIFO) Algorithm

m Referencestring: 1,2,3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

2 1 3 9 page faults

(slide modified by R. Doemer, 05/27/10) [%+
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 9.7

“%7/ First-In-First-Out (FIFO) Algorithm

m Reference string: 1,2, 3,4,1,2,5,1,2,3,4,5
m 3 frames (3 pages can be in memory at a time per process)

3 9 page faults

w N
(e]r]
[EY

2 4
m 4 frames
1)1 5 4
2 7 1 5 10 page faults
33| o
4 4] 3

m Belady’'s Anomaly: more frames = more page faults

(slide modified by R. Doemer, 05/27/10) .. M‘

Operating System Concepts — 81" Edition 9.8 Silberschatz, Galvin and Gagne ©2009

Lo .
“$7/FIFO lllustrating Belady’s Anomaly

16
14
12

10 <N

number of page faults

1 2 3 4 5 6 7
number of frames

A& ux:}‘
Operating System Concepts — 8 Edition 9.9 Silberschatz, Galvin and Gagne ©2009

=

&“?:’E’age Faults Versus The Number of Frames

General expectation:

16
o 14 \‘
ERY: \
3 Y
D
8 10 \
5 8 N
é 6 \\
2 4 Tl
2
1 2 3 4 5 6

number of frames

(slide modified by R. Doemer, 05/25/10) .. f.*
Operating System Concepts — 8" Edition 9.10 Silberschatz, Galvin and Gagne ©2009

=

L,’_,,A’-"'-"J . .
&8 Optimal Algorithm

m Replace page that will not be used for longest period of time
m 4 frames example
1,2,3,4,1,2,5,1,2,3,4,5

6 page faults

[[e[m]r]

® How do you know this?

m Optimal Algorithm: For comparison only!
Used for measuring how well other algorithms perform.

- - i‘,_ \‘!
(slide modified by R. Doemer, 05/27/10) [%+
Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 9.11

< i
“#7east Recently Used (LRU) Algorithm

N
W
»

m Reference string: 1 1,2,5/1,2,3,4,5

8 page faults

[o]s]m]r]

5]
2]
4
3]

[o]o]m]r]

(o]]r]r]
BEINE

m Possible implementation by counters/clock
e Every page entry has a counter/clock associated with it

e Every time a page is referenced, copy clock into its counter

e When a page needs to be changed,
find the smallest counter to determine which page to replace

et
(slide modified by R. Doemer, 05/27/10)

Operating System Concepts — 81" Edition 9.12 Silberschatz, Galvin and Gagne ©2009

“#7 east Recently Used (LRU) Algorithm

m Alternative implementation by use of a stack —
keep a stack of page numbers in a doubly linked list:

e Whenever a page is referenced

» move it to the top
e Requires 6 pointers to be changed
e No search needed for replacement

reference string
4 7 0 7 1 0

_L
n
-
n
~
-
n

stack stack
before after
: ° =
(slide modified by R. Doemer, 05/27/10) ',’T
Operating System Concepts — 8" Edition 9.13 Silberschatz, Galvin and Gagne ©2009

=

—~
“»77 LRU Approximation Algorithms

® LRU Algorithm is quite expensive to implement
e LRU approximation algorithms are often used instead
m Reference bit
e With each page associate a bit, initially set to 0
e When page is referenced, set bit to 1 (in hardware)
e Replace a page whose bit is O (if one exists)
» We do not know the order, however
m Second chance algorithm (aka. Clock algorithm)
Use FIFO replacement as basic algorithm
Add a reference bit as above
Consider pages to be replaced in circular order (clock order)
If a page is to be replaced
» if reference bit = 1, then reset bit = 0 and leave page in memory
» if reference bit = 0, replace this page

.~ >
(slide modified by R. Doemer, 05/27/10) 1

Operating System Concepts — 81" Edition 9.14 Silberschatz, Galvin and Gagne ©2009

=

bl

-
»”" LRU Approximation Algorithms

m Second-Chance (Clock) Page Replacement Algorithm

reference pages reference pages
bits bits
next
victim = El
[o]
circular queue of pages circular queue of pages

(a) (b) f}‘&.}
(slide modified by R. Doemer, 05/27/10) A ‘5‘
Operating System Concepts — 8" Edition 9.15 Silberschatz, Galvin and Gagne ©2009

£\

“$7’ Page Replacement Algorithms

m Example: FIFO Algorithm

reference string

7 01 2 0 3 0 4 2 3 0 3 2 1 o1 7 0 1
Eﬂ

| 1] {o] [o] 1] {1]

L] 0 o] [l

page frames

m 15 page faults

. =R
(slide modified by R. Doemer, 05/27/10) .. I
Operating System Concepts — 81" Edition 9.16 Silberschatz, Galvin and Gagne ©2009

=

o i
“$7’ Page Replacement Algorithms

m Example: Optimal Algorithm

reference string

7 0 1
| 9]
L

page frames

2 0 30 4 2 8023821 2017 01

EIESSY
(][]

2
o o
il

B 9 page faults

S

=y
(slide modified by R. Doemer, 05/27/10) .. ‘5"

Operating System Concepts — 8" Edition 9.17 Silberschatz, Galvin and Gagne ©2009

=

“$7’ Page Replacement Algorithms

m Example: LRU Algorithm

reference string
0 4 2 3 0 3

7 0 1 2 0 3 21 2 0 1 7 0 1
4] 4] [4] [o 1]
(o o] [of [o| [o] o] 3] [3] of o
HANRiIgil o 2 2 2

page frames

B 12 page faults

el
P

(slide modified by R. Doemer, 05/27/10) . I

Operating System Concepts — 81" Edition 9.18 Silberschatz, Galvin and Gagne ©2009

=

(@

|
“»7 Page Replacement Algorithms

m Alternative Algorithms include Counting Algorithms

e Keep a counter of the number of references
that have been made to each page

e LFU Algorithm: least-frequently used replacement
» replaces page with smallest count
» frequently used pages stay in memory

e MFU Algorithm: most-frequently used replacement
» replaces page with largest count

» based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

-

S~ 2
(slide modified by R. Doemer, 05/27/10) [%+
Operating System Concepts — 8" Edition 9.19 Silberschatz, Galvin and Gagne ©2009
“:—
(v
L 1
il Allocation of Frames
Each process needs a minimum number of pages
Example: IBM 370 — 6 pages to handle SS MOVE instruction:
e instruction is 6 bytes, might span 2 pages
e 2 pages to handle from
e 2 pages to handle to
m Allocation of Frames:
Two major schemes exist
e Fixed allocation
e Priority allocation
(slide modified by R. Doemer, 05/27/16) :
Operating System Concepts — 81" Edition 9.20 Silberschatz, Galvin and Gagne ©2009

10

e Y . .
rdl Fixed Allocation
m Equal allocation —
For example, if there are 100 frames and 5 processes,
give each process 20 frames.
® Proportional allocation —
Allocate according to the size of the process
Example:
—s; =size of process p; m =64
—S=3s; si =10
—m = total number of frames s, =127
. S 10
—a; =allocation for p; == xm ay=——x64=%~5
' Pi=s 1137
a, = 127 x64 ~59
137
s ../.7‘ : = ‘\,
(slide modified by R. Doemer, 05/27/10) ./ ‘.’T
Operating System Concepts — 8" Edition 9.21 Silberschatz, Galvin and Gagne ©2009

Priority Allocation

m Use a proportional allocation scheme using priorities
rather than size

m |f process P; generates a page fault,
e select for replacement one of its own frames, or

e select for replacement a frame from a process
with lower priority number

m Global replacement —
select a replacement frame from the set of all frames;
one process can take a frame from another

m Local replacement —
select a replacement frame from only processes’ own
set of allocated frames

A

(slide modified by R. Doemer, 05/27/10) f”

Operating System Concepts — 81" Edition 9.22 Silberschatz, Galvin and Gagne ©2009

11

> Thrashing

m |f a process has “not enough” pages, the page-fault rate is very high.
B This leads to:
e |ow CPU utilization

e operating system thinks that it needs to increase the degree of
multiprogramming

e another process is added to the system
e even less pages become available...

B Thrashing = a process is constantly swapping pages in and out

(slide modified by R. Doemer, 05/27/10) . “Y‘

Silberschatz, Galvin and Gagne ©2009

“%77 Thrashing Phenomenon

g thrashing
S
N
=
=
o
®)
degree of multiprogramming
(slide modified by R. Doemer, 05/27/10) ./ "3"
Operating System Concepts — 8 Edition 9.24 Silberschatz, Galvin and Gagne ©2009

12

<57

Demand Paging and Thrashing

Why does demand paging work?

Locality model
e Process migrates from one locality to another
e Localities may overlap

When does thrashing occur?
¥ size of locality > available memory size

2 g

(slide modified by R. Doemer, 05/27/10) ..

Operating System Concepts — 8" Edition 9.25

d\

Silberschatz, Galvin and Gagne ©2009

£\

/f"”"j
L"‘?*_,_"_.’Locality In A Memory-Reference Pattern

a2

28

memory address

24

page numbers

execution time ——»

Operating System Concepts — 8 Edition

Silberschatz, Galvin and Gagne ©2009

ot Working-Set Model

B A =working-set window = a fixed number of page references
Example: sequence of 10,000 instructions

m WSS, (working set size of Process P)) =
total number of pages referenced in the most recent A
(varies in time)

e if Aistoo small, it will not encompass the entire locality
e if Aistoo large, it will encompass several localities
e if A =oo, it will encompass the entire program

D =X WSS, = total demand of frames of all processes

if D > m = Thrashing occurs!

Policy:
if D > m, then suspend (swap out) one of the processes

(slide modified by R. Doemer, 05/27/10) ./
Operating System Concepts — 8" Edition 9.27 Silberschatz, Galvin and Gagne ©2009

<57 Working-Set Model

page reference table
...2615777751623412344434344413234443444._..

r1 t2
WS(t,) = {1,2.56,7) WS(t,) = (34)
A
(slide modified by R. Doemer, 05/27/10) \'f‘
Operating System Concepts — 81" Edition 9.28 Silberschatz, Galvin and Gagne ©2009

14

“#7/ Keeping Track of the Working Set

m Approximation with

e interval timer

e areference bit in hardware

e Set of reference bits associated with each page
m Example: A =10,000 time units

e Timer interrupts after every 5000 time units

e Keep in memory 2 additional bits for each page

e Whenever the timer interrupts,
shift the bits in memory,
copy the hardware bits to the first bit in memory, and
set the values of all hardware reference bits to 0

e If one of the memory bits = 1 = page in working set
m Why is this not completely accurate?

e Can't tell when exactly reference occurred
B Improvement: 10 bits and interrupt every 1000 time units

_,../.‘ : i‘,‘ ‘\,
(slide modified by R. Doemer, 05/27/10) [%

28

Operating System Concepts — 8" Edition 9.29 Silberschatz, Galvin and Gagne ©2009

—
“»77 Page-Fault Frequency Scheme

m Establish “acceptable” page-fault rate
e If actual rate too low, process loses frame
e If actual rate too high, process gains frame

@ .
= increase number
- of frames
3
o upper bound
@
=)
@
o
lower bound
decrease number
of frames
number of frames
= 3
5
4 %
Operating System Concepts — 81" Edition 9.30 Silberschatz, Galvin and Gagne ©2009

15

=

-1’-""*“5-)
“%7/ Other Issues — Program Structure

® Program structure
e int data[128,128];
e Each row is stored in one page

e Program 1

for (J = 0; j < 128; j++)
for (i = 0; i < 128; i++)
data[i,j] = O;

128 x 128 = 16,384 page faults

e Program 2
for (i = 0; i < 128; i++)
for (J = 0; j < 128; j++)

data[i,j] = O;

128 page faults
=% |
(slide fixed by R. Doemer, O;%?G"?)

Silberschatz, Galvin and Gagne ©2009

9.31

Operating System Concepts — 8" Edition

End of Chapter 9
|

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition,

16

