
2/22/2011

1

11.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 11: File System Implementation

 File-System Structure

 File-System Implementation 

 Directory Implementation

 Allocation Methods

 Free-Space Management 

 Efficiency and Performance

 Recovery

 Log-Structured File Systems

 NFS

 Example: WAFL File System

(slides selected/reordered/improved by R. Doemer, 02/22/11)

11.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Efficiency and Performance

 Efficiency depends on:

 Disk allocation and directory algorithms

 Type of data kept in file’s directory entry

 Performance improvement techniques:

 Disk cache

 Separate section of main memory (in kernel space)
for frequently used disk blocks

 Virtual disk (RAM disk)

 Dedicate a section of main memory as virtual file-system

 Free-behind and read-ahead techniques

 Optimization for sequential access

(slide improved by R. Doemer, 02/22/11)



2/22/2011

2

11.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Backup and Recovery

 System failure (e.g. sudden power outage) may result in

 Loss of data

 Inconsistency of data

 File system recovery techniques

 Consistency checker

 Compares data in directory structure with data blocks on disk, and 
tries to fix inconsistencies

 Examples: fsck in Unix, chkdsk in Windows

 Back up

 Use system programs to regularily back up data from disk
to another storage device (e.g. magnetic tape or other disk)

 Recover lost file or disk by restoring data from backup

(slide improved by R. Doemer, 02/22/11)

11.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Log Structured File Systems

 Log-based transaction-oriented file systems

 Record each update to the file system as a transaction

 aka. journaling file system

 All transactions are written to a log file

 A transaction is considered committed
once it is written to the log

 However, the file system may not yet be updated

 Transactions in the log are asynchronously written to the file system

 When the file system is successfully modified,
the transaction is removed from the log

 If the file system crashes, all remaining transactions in the log
must still be performed

(slide improved by R. Doemer, 02/22/11)



2/22/2011

3

11.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Network File System (NFS)

 The Sun Network File System (NFS)

 An implementation and a specification of a software file system
for accessing remote files across LANs (or WANs)

 The implementation is part of the Solaris and SunOS operating systems 
running on Sun workstations

 Now available also for most other OS

 NFS

 is built on top of the unreliable datagram protocol (UDP/IP protocol)

 e.g. over Ethernet

 is designed to operate in a heterogeneous environment
of different machines, operating systems, and network architectures

 NFS specification is independent of these media

 uses remote procedure call (RPC) primitives
between two implementation-independent file system interfaces

(slide improved by R. Doemer, 02/22/11)

11.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Schematic View of NFS Architecture 



2/22/2011

4

11.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Architecture Layers

 UNIX file-system interface layer

 Based on open, read, write, and close calls,
and file descriptors

 Virtual File System (VFS) layer

 Activates file-system-specific operations to handle requests
according to the file-system types

 Calls the NFS protocol procedures for remote requests

 NFS service layer

 Bottom layer of the architecture

 Implements the NFS protocol

 Based on remote procedure calls (RPC)

(slide improved by R. Doemer, 02/22/11)

11.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Mounting

 Interconnected workstations are viewed

as a set of independent machines with independent file systems

 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral sub-tree

of the local file system (transparent to the user)

 Unless empty, it replaces the sub-tree

descending from the local directory

 Specification of the remote directory for the mount operation

is non-transparent (for the system administrator)

 Host and full name of the remote directory have to be provided

 Files in the remote directory can then be accessed

in a transparent manner

(slide improved by R. Doemer, 02/22/11)



2/22/2011

5

11.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NSF Mounting

Local file system
(on NFS client)

Remote file system
(on NSF server)

Remote sub-tree
mounted on client

(slide improved by R. Doemer, 02/22/11)

11.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Mount Protocol

 The NFS specification distinguishes between

 the services provided by a mount mechanism and

 the actual remote-file-access services

 NFS mount protocol

 establishes an initial logical connection between server and client

 Mount operation includes name of remote directory to be mounted
and name of server machine storing it

 Mount request is mapped to corresponding RPC and forwarded to 
mount server running on server machine

 Export list specifies local file systems that server exports,
along with names of machines that are permitted to mount them

 Following a mount request that conforms to its export list,
the server returns a file handle (a key for further accesses)

 The mount operation changes only the user’s view
and does not affect the server side 

(slide improved by R. Doemer, 02/22/11)



2/22/2011

6

11.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NFS Access Protocol

 Provides a set of remote procedure calls for remote file operations

 The procedures support the following operations:

 searching for a file within a directory 

 reading a set of directory entries 

 manipulating links and directories 

 accessing file attributes

 reading and writing files

 NFS servers are stateless

 each request has to provide a full set of arguments

 Modified data must be committed to the server’s disk
before results are returned to the client

 The NFS protocol does not provide concurrency-control mechanisms

(slide improved by R. Doemer, 02/22/11)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 11


