
EECS211: Advanced System Software Lecture 14

(c) 2011 R. Doemer 1

EECS 211:
Advanced System Software

Lecture 14

Rainer Dömer

doemer@uci.edu

The Henry Samueli School of Engineering
Electrical Engineering and Computer Science

University of California, Irvine

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer 2

Lecture 14: Overview

• Course Administration
– Final Course Evaluation

• Assignment 3
– Priority-based scheduling, bounded buffer

• Assignment 4
– User programs in Nachos

• Assignment 5
– Exception handling and system calls

• Storage Management
– I/O Systems



EECS211: Advanced System Software Lecture 14

(c) 2011 R. Doemer 2

3

Course Administration

• Final Course Evaluation
– 8th through 10th week

– February 22, 2011 – March 13, 2011, 11:45pm

– Online via EEE Evaluation application

• Feedback from students to instructors
– Voluntary

– Completely anonymous!

– Very valuable!

• Please help to improve this class!

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer 4

Assignment 3

• The Nachos System
– Task 1: Implement a priority-based scheduler

• Non-preemptive! (we don’t use any –rs option this time!)

• Files thread.h, thread.cc and scheduler.cc

– Task 2: Bounded buffer for safe communication
• Template code provided, threadtest.cc.W11templateA3

• 2 producer and 2 consumer threads with different priorities

• Add missing synchronization using locks, condition variables

• Deliverables
• Brief explanation (in body of email)
• Scheduler: thread.h, thread.cc, scheduler.cc

• Bounded buffer: threadtest.cc

• Log file: log.txt

• Due by email to doemer@uci.edu
• Wednesday, February 23, 2011, at 2pm (sharp!)



EECS211: Advanced System Software Lecture 14

(c) 2011 R. Doemer 3

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer 5

Assignments 4 and 5

• The Nachos System

• User code:
• Cross-compiled

C/C++ code

• emulated by
MIPS simulator

• Kernel:
• Compiled

C/C++ code

• normal (debug’able)
Unix process

• I/O System:
• simulated by

Unix process I/O

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer 6

Assignment 4

• User programs in Nachos
– Write simple user programs to be run on Nachos kernel

• “good” programs: HelloWorld.c, Reverse.c, ListFile.c
• “bad” programs: MemError.c, FileError.c, IOError.c

– Validate kernel using these test programs
• “good” programs should run successfully
• “bad” programs should be caught and cleanly killed

• Deliverables
– brief explanation (in body of email)
– HelloWorld.c, Reverse.c, ListFile.c,
MemError.c, FileError.c, IOError.c

– corresponding log files
– Email to doemer@uci.edu

• Due
– Wednesday, March 2, 2011, at 2pm (sharp!)



EECS211: Advanced System Software Lecture 14

(c) 2011 R. Doemer 4

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer 7

Assignment 5

• Exceptions and System Calls in Nachos
– Implement exception handling and system calls

• Implement ExceptionHandler(); handle 9 exceptions
• Implement SystemCall(); handle 7 (out of 9) system calls

– Validate kernel using the test programs from Assignment 4
• “good” programs: HelloWorld.c, Reverse.c, ListFile.c
• “bad” programs: MemError.c, FileError.c, IOError.c
• Make your kernel bullet-proof!

• Deliverables
– brief explanation (in body of email)
– exception.cc
– Log files of running examples from Assignment 4
– Email to doemer@uci.edu

• Due
– Wednesday, March 9, 2011, at 2pm (sharp!)

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer 8

Assignment 4

• User Programs in Nachos
– Interactive discussion and code review

• cd code/userprog

• ./nachos

• ./nachos –x ../test/halt

• ./nachos –x ../test/shell

• more ../machine/machine.h

• more ../syscall.h

• cd ../test

• more halt.c

• more sort.c

• vim Makefile

• gmake

• ../userprog/nachos –x halt



EECS211: Advanced System Software Lecture 14

(c) 2011 R. Doemer 5

EECS211: Advanced System Software, Lecture 14 (c) 2011 R. Doemer 9

Storage Management

• Note: We skip chapter 12, “Mass-Storage Structure”
– Hard disks (incl. RAID) are devices

• Devices are important, but outside of OS topic

– Modern hard disks handle physical block layout internally
• Cylinder, track, sector numbers (and bad blocks)
• OS sees logical block numbers only

• Excerpts from chapter 13 of
“Operating System Concepts”, 8th Edition,
by A. Silberschatz, P. B. Galvin, G. Gagne,
John Wiley & Sons, 2009.

• Storage Management
– I/O Systems


