Chapter 14: Protection

i (¥ e

(slides improved by R. Doemer, 03/03/11)
Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

r
P -
! {’i"*

A

~

Chapter 14: Protection

Goals of Protection

Principles of Protection

Domain of Protection

Access Matrix

Implementation of Access Matrix
Access Control

Revocation of Access Rights
Capability-Based Systems

Language-Based Protection

(slide modified by R. Doemer, 03/03/11) A o
Operating System Concepts — 81" Edition 14.2 Silberschatz, Galvin and Gagne ©2009

=

.‘.’.”wd - H H i
“$77 Goals and Principles of Protection

m Operating system consists of a collection of objects,
hardware or software

m Each object has a unique name and
can be accessed through a well-defined set of operations.

m Protection problem
e ensure that each object is accessed correctly, and
e only by those processes that are allowed to do so.

» Protection is addresses only an internal problem!
(in contrast to Security, see next chapter!)

B Guiding principle — principle of least privilege
e Programs, users and systems should be given just enough privileges

to perform their tasks A
|
(slide modified by R. Doemer, 03/03/11) . ‘f'
Operating System Concepts — 8" Edition 14.3 Silberschatz, Galvin and Gagne ©2009

u.-— Domain Structure

B Access-right = <object-name, rights-set>
where rights-set is a subset of all valid operations
that can be performed on the object.

B Domain = set of access-rights

Dy D, Dy

< 0,, {read, write} >
< Oy, {read, write} >
< O,, {execute} >

< O, {execute} >
< O, {read} >

< Oy, {print} >

(slide modified by R. Doemer, 03/03/11) .. p- S

Operating System Concepts — 81" Edition 14.4 Silberschatz, Galvin and Gagne ©2009

=

r.”"'"‘j ‘ H i i
‘“-*‘%_." Domain Implementation in UNIX

B System consists of 2 types of domains:
e Each User
e Supervisor (aka. super-user, root)

m Specifically in UNIX
o Object =file
e Domain = user-id
e Domain switch accomplished via file system.
» Each file has associated with it a domain bit (setuid bit).

» When file is executed and setuid = on,
then user-id is set to owner of the file being executed.

» When execution completes user-id is reset.

e Example:
» Homework submission script on Unix file system f‘"‘\]
=
(slide modified by R. Doemer, 03/03/11) . ‘f'
Operating System Concepts — 8" Edition 14.5 Silberschatz, Galvin and Gagne ©2009

g*"""‘k .
. & Access Matrix

B View protection as a matrix: Access Matrix

o Rows represent domains
e Columns represent objects

m Access(i, j) is the set of operations

that a process executing in Domain; can invoke on Objectj

(slide modified by R. Doemer, 03/03/11) .. p- S

Operating System Concepts — 81" Edition 14.6 Silberschatz, Galvin and Gagne ©2009

3 Access Matrix

F; F, F; printer

D, read read

D, print

D, read execute

read read
write write

Simple access matrix example
S 3
(slide fixed by R. Doemer, 03/02/09) 'if"

Operating System Concepts — 8" Edition 14.7 Silberschatz, Galvin and Gagne ©2009

.—’-""""\k -
r & Use of Access Matrix

m Protection:
e If a process in domain D; tries to perform “op” on object O;,

then “op” must be in the access matrix.

m Can be expanded to dynamic protection.
e Operations to add, delete access rights.
e Special access rights:
» owner of O,

» copy op from O; to O,
» control — D; can modify D; access rights
» transfer — switch from domain D; to D

— y
(slide modified by R. Doemer, 03/03/11) .. p- S

Operating System Concepts — 81" Edition 14.8 Silberschatz, Galvin and Gagne ©2009

=

(slide fixed by R. Doemer, 03/027(39)

(@0, %
»7" Access Matrix with Switch Rights
object
FlR| R |™ 00|00
domain prlnter
D read read switch
D, print switch | switch
D, read |execute
D, regd regd switch
write write
Example of extended access matrix
(switch between domains)
(slide modified by R. Doemer, 03/03/11) ‘?‘
Operating System Concepts — 8" Edition 14.9 Silberschatz, Galvin and Gagne ©2009
=
&l ﬁ,,ﬂ""-\
3 . . .
»*7 Access Matrix with Copy Rights
object
F Fy Fs
domain
D, execute write*
D, execute read* execute
D, execute
(a) Before copy
object
F Fy Fy
domain
D, execute write*
D, execute read” execute
D, execute read
(b) After copy Sy
P

Operating System Concepts — 81" Edition 14.10 Silberschatz, Galvin and Gagne ©2009

™

(™

“$77 Access Matrix With Owner Rights

object
F F F
domain
D owner ;
3 execute pliits
. read”
D read
2 owner SLAr
write
D, execute
(a) Before owner change
object
F F Fs
domain
D owner 5
1 execute e
owner read*
D, read* owner
write* write
Dy write write
(b) After owner change 4
(slide modified by R. Doemer, 03/03/11) . 5.*
Operating System Concepts — 8" Edition 14.11 Silberschatz, Galvin and Gagne ©2009

Use of Access Matrix

B Access matrix design separates mechanism from policy.
e Mechanism
» Operating system provides access-matrix + rules.

» It ensures that the matrix is only manipulated by authorized agents
and that rules are strictly enforced.

e Policy
» User dictates policy.
» Who can access what object and in what mode.

(slide modified by R. Doemer, 03/03/11) by
Operating System Concepts — 81" Edition 14,12 Silberschatz, Galvin and Gagne ©2009

=

./-‘-"Mj N . .
“$7" Implementation of Access Matrix

m By column = Access-control list for one object
Defines who can perform what operation.

Domain 1 = Read, Write
Domain 2 = Read
Domain 3 = Read

B By row = Capability List (like a key)
Fore each domain, what operations are allowed on what objects.
Object 1 — Read
Object 4 — Read, Write, Execute
Object 5 — Read, Write, Delete, Copy

£

Operating System Concepts — 8" Edition 14.13 Silberschatz, Galvin and Gagne ©2009

=

J.""'"J 1 -
“$7” Revocation of Access Rights

B Access List—
Delete access rights from access list.

e Simple
e Immediate

B Capability List —
Scheme required to locate capability in the system before it can be revoked.

e Reacquisition
e Back-pointers

e [ndirection
e Keys

£
P
/ﬂ,‘%‘

(slide fixed by R. Doemer, 03/02/09) LY

Operating System Concepts — 81" Edition 14.14 Silberschatz, Galvin and Gagne ©2009

™=

"“‘5) i
r & Language-Based Protection

m Specification of protection in a programming language

e allows the high-level description of policies
for the allocation and use of resources.

® Language implementation

e can provide software for protection enforcement
when automatic hardware-supported checking is unavailable.

e Interpret protection specifications to generate calls
on whatever protection system is provided
by the hardware and the operating system.

& =X

22

(slide modified by R. Doemer, 03/03/11) .. &:
Operating System Concepts — 8" Edition 14.15 Silberschatz, Galvin and Gagne ©2009

=

> &) Protection in Java

B Protection is handled by the Java Virtual Machine (JVM)
B Each class is assigned a protection domain when it is loaded by the JVM.

e The protection domain indicates what operations the class
can (and cannot) perform.

e doPrivileged block annotates stack frame for tree of privileged calls

e If a class method is invoked that performs a privileged operation,
the stack is inspected to ensure the operation can be performed
by the class.

§ ‘\\
AN

(slide modified by R. Doemer, 03/03/11) L%

Operating System Concepts — 81" Edition 14.16 Silberschatz, Galvin and Gagne ©2009

|
‘h-’ff»f' Stack Inspection in Java

m Example of protected method call in Java:
e gui method of untrusted applet calls get and open

» get succeeds because checkPermission finds
doPrivileged stack frame

» open fails because no doPrivileged stack frame is found
rotection untrusted .

Som aln: applet URL loader networking

socket , i 80 1

permission: | N°Ne Jucent.com:80, connec any

class: gui: get(URL u): open(Addr a):
get(url); doPrivileged { checkPermission
open(addr); open(‘proxy.lucent.com:80’); (a, connect);
cob 1 connect (a);

<request u from proxy=> 565

m Note: Stack must be protected from any manipulation!

28

e Java uses safe pointers!

(slide modified by R. Doemer, 03/03/11) .. ‘3"
Operating System Concepts — 8" Edition 14.17 Silberschatz, Galvin and Gagne ©2009

e ¥t P

Operating System Concepts — 8" Edition, Silberschatz, Galvin and Gagne ©2009

